[数据结构]红黑树,详细图解插入

发布于:2025-02-19 ⋅ 阅读:(24) ⋅ 点赞:(0)

目录

一、红黑树的概念

二、红黑树的性质

三、红黑树节点的定义

四、红黑树的插入(步骤)

1.为什么新插入的节点必须给红色?

2、插入红色节点后,判定红黑树性质是否被破坏

五、插入出现连续红节点情况分析+图解(看uncle节点)

5.1、uncle存在且为红

5.2、uncle不存在

1、单旋

2、双旋

5.3、uncle存在且为黑

1、单旋

2、双旋

六、插入总结

1、红黑树插入的两种步骤

 2、插入代码

七、红黑树总结及代码


一、红黑树的概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或 Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制

红黑树确保——没有一条路径会比其他路径长出两倍,因而是接近平衡的


二、红黑树的性质

1. 每个结点不是红色就是黑色

2. 根节点是黑色的 

3. 如果一个节点是红色的,则它的两个孩子结点是黑色的 (没有连续的红节点

4. 从任一结点到其所有后代叶结点的简单路径上,均包含相同数目的黑结点 

5. 每个叶子结点都是黑色的(此处的叶子结点指的是NIL空结点)

        最优情况:全黑或每条路径都是一黑一红的满二叉树,高度logN

        最差情况:每颗子树左子树全黑,右子树一黑一红。高度2*logN。

        可以发现,最坏情况的时间复杂度和AVL树一样,都是O(logN),但是红黑树这种近似平衡的结构减少了大量旋转,综合性能优于AVL树。


三、红黑树节点的定义

enum Colour
{
	RED,
	BLACK
};

template<class K, class V>
struct RBTreeNode
{
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;

	pair<K, V> _kv;
	Colour _col;

	RBTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _col(RED)
	{}
};

四、红黑树的插入(步骤)

1.为什么新插入的节点必须给红色?

(1)新节点给红色,可能出现连续红节点

(2)如果新节点给黑色,必定会违反性质4(其每条路径的黑色节点数量相同

2、插入红色节点后,判定红黑树性质是否被破坏

因为新节点的默认颜色是红色,所以

(1)双亲节点的颜色是黑色,没有违反红黑树任何 性质,则不需要调整;

(2)双亲节点为红色,就会出现连续的红节点,此时需要对红黑树分情况来讨论:见下一部分


五、插入出现连续红节点情况分析+图解(看uncle节点)

约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点

下面的分析都是以p为g的左孩子为例

5.1、uncle存在且为红

cur插入后,p和u变黑,g变红

(1)g没有父亲,g为根,g变黑

(2)g有父亲。其为黑,结束;其为红,后把g当成cur,继续向上调整

5.2、uncle不存在

u不存在,则cur一定是新插入的节点

(如果cur不是新插入的节点,则cur和p一定有一个节点是黑色,否则每条路径黑色节点不相同

下图为解释:

1、单旋

右单旋

2、双旋

 左单旋 + 右单旋 

5.3、uncle存在且为黑

uncle存在且为黑,是情况一变来的,所以cur原来的节点一定是黑色的

现在其是红色的原因是,cur的子树在调整过程中将cur的颜色由黑变红。

1、单旋

右单旋

2、双旋

左单旋 + 右单旋

六、插入总结

1、红黑树插入的两种步骤

1、uncle存在且为红

2、uncle不存在 或者 uncle存在且为黑

通过分析,

uncle不存在的单旋 和 uncle存在且为黑的单旋 可以写在一起,

uncle不存在的双旋 和 uncle存在且为黑的双旋 可以写在一起,

不论uncle存在或者不存在,都不影响此步的单旋或者双旋

当p为g的右孩子时,操作都相反。

详细步骤见其中while (parent && parent->_col == RED)这一步。

 2、插入代码

bool Insert(const pair<K, V>& kv)
{
	if (_root == nullptr)
	{
		_root = new Node(kv);
		_root->_col = BLACK;
		return true;
	}

	Node* parent = nullptr;
	Node* cur = _root;
	while (cur)
	{
		if (cur->_kv.first < kv.first)
		{
			parent = cur;
			cur = cur->_right;
		}
		else if (cur->_kv.first > kv.first)
		{
			parent = cur;
			cur = cur->_left;
		}
		else
		{
			return false;
		}
	}

	cur = new Node(kv);
	cur->_col = RED;
	if (parent->_kv.first < kv.first)
	{
		parent->_right = cur;
	}
	else
	{
		parent->_left = cur;
	}

	cur->_parent = parent;

	while (parent && parent->_col == RED)
	{
		Node* grandfather = parent->_parent;
		//p为g左孩子
		if (parent == grandfather->_left)
		{
			Node* uncle = grandfather->_right;
			// 情况1:u存在且为红 
			if (uncle && uncle->_col == RED)
			{
				// 变色
				parent->_col = uncle->_col = BLACK;
				grandfather->_col = RED;

				// 继续向上处理
				cur = grandfather;
				parent = cur->_parent;
			}
			else // u不存在 或 存在且为黑
			{
				//情况2.1 , 3.1
				if (cur == parent->_left)
				{
					//     g
					//   p
					// c
					RotateR(grandfather);
					parent->_col = BLACK;
					grandfather->_col = RED;
				}
				else//情况2.2 , 3.2
				{
					//     g
					//   p
					//		c
					RotateL(parent);
					RotateR(grandfather);

					cur->_col = BLACK;
					grandfather->_col = RED;
				}

				break;
			}
		}
		//p为g右孩子
		else // parent == grandfather->_right
		{
			Node* uncle = grandfather->_left;
			// u存在且为红
			if (uncle && uncle->_col == RED)
			{
				// 变色
				parent->_col = uncle->_col = BLACK;
				grandfather->_col = RED;

				// 继续向上处理
				cur = grandfather;
				parent = cur->_parent;
			}
			else
			{
				if (cur == parent->_right)
				{
					// g
					//	  p
					//       c
					RotateL(grandfather);
					grandfather->_col = RED;
					parent->_col = BLACK;
				}
				else
				{
					// g
					//	  p
					// c
					RotateR(parent);
					RotateL(grandfather);
					cur->_col = BLACK;
					grandfather->_col = RED;
				}

				break;
			}
		}
	}

	_root->_col = BLACK;

	return true;
}

七、红黑树总结及代码

红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O(logN),红黑树不追求绝对平衡,只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数, 所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。

using namespace std;

enum Colour
{
	RED,
	BLACK
};

template<class K, class V>
struct RBTreeNode
{
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;

	pair<K, V> _kv;
	Colour _col;

	RBTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _col(RED)
	{}

};

template<class K, class V>
struct RBTree
{
	typedef RBTreeNode<K, V> Node;
public:
	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_col = BLACK;
			return true;
		}

		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(kv);
		cur->_col = RED;
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}

		cur->_parent = parent;

		while (parent && parent->_col == RED)
		{
			Node* grandfather = parent->_parent;
			//p为g左孩子
			if (parent == grandfather->_left)
			{
				Node* uncle = grandfather->_right;
				// 情况1:u存在且为红 
				if (uncle && uncle->_col == RED)
				{
					// 变色
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;

					// 继续向上处理
					cur = grandfather;
					parent = cur->_parent;
				}
				else // u不存在 或 存在且为黑
				{
					//情况2.1 , 3.1
					if (cur == parent->_left)
					{
						//     g
						//   p
						// c
						RotateR(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else//情况2.2 , 3.2
					{
						//     g
						//   p
						//		c
						RotateL(parent);
						RotateR(grandfather);

						cur->_col = BLACK;
						grandfather->_col = RED;
					}

					break;
				}
			}
			//p为g右孩子
			else // parent == grandfather->_right
			{
				Node* uncle = grandfather->_left;
				// u存在且为红
				if (uncle && uncle->_col == RED)
				{
					// 变色
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;

					// 继续向上处理
					cur = grandfather;
					parent = cur->_parent;
				}
				else
				{
					if (cur == parent->_right)
					{
						// g
						//	  p
						//       c
						RotateL(grandfather);
						grandfather->_col = RED;
						parent->_col = BLACK;
					}
					else
					{
						// g
						//	  p
						// c
						RotateR(parent);
						RotateL(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}

					break;
				}
			}
		}

		_root->_col = BLACK;

		return true;
	}

	void RotateL(Node* parent)
	{
		++_rotateCount;

		Node* cur = parent->_right;
		Node* curleft = cur->_left;

		parent->_right = curleft;
		if (curleft)
		{
			curleft->_parent = parent;
		}

		cur->_left = parent;

		Node* ppnode = parent->_parent;

		parent->_parent = cur;


		if (parent == _root)
		{
			_root = cur;
			cur->_parent = nullptr;
		}
		else
		{
			if (ppnode->_left == parent)
			{
				ppnode->_left = cur;
			}
			else
			{
				ppnode->_right = cur;

			}

			cur->_parent = ppnode;
		}
	}


	void RotateR(Node* parent)
	{
		++_rotateCount;

		Node* cur = parent->_left;
		Node* curright = cur->_right;

		parent->_left = curright;
		if (curright)
			curright->_parent = parent;

		Node* ppnode = parent->_parent;
		cur->_right = parent;
		parent->_parent = cur;

		if (ppnode == nullptr)
		{
			_root = cur;
			cur->_parent = nullptr;
		}
		else
		{
			if (ppnode->_left == parent)
			{
				ppnode->_left = cur;
			}
			else
			{
				ppnode->_right = cur;
			}

			cur->_parent = ppnode;
		}
	}

	
	bool CheckColour(Node* root, int blacknum, int benchmark)
	{
		if (root == nullptr)
		{
			if (blacknum != benchmark)
				return false;

			return true;
		}

		if (root->_col == BLACK)
		{
			++blacknum;
		}

		if (root->_col == RED && root->_parent && root->_parent->_col == RED)
		{
			cout << root->_kv.first << "出现连续红色节点" << endl;
			return false;
		}

		return CheckColour(root->_left, blacknum, benchmark)
			&& CheckColour(root->_right, blacknum, benchmark);
	}

	bool IsBalance()
	{
		return IsBalance(_root);
	}

	bool IsBalance(Node* root)
	{
		if (root == nullptr)
			return true;

		if (root->_col != BLACK)
		{
			return false;
		}

		// 基准值
		int benchmark = 0;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_col == BLACK)
				++benchmark;

			cur = cur->_left;
		}

		return CheckColour(root, 0, benchmark);
	}

	int Height()
	{
		return Height(_root);
	}

	int Height(Node* root)
	{
		if (root == nullptr)
			return 0;

		int leftHeight = Height(root->_left);
		int rightHeight = Height(root->_right);

		return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
	}

private:
	Node* _root = nullptr;

public:
	int _rotateCount = 0;
};


网站公告

今日签到

点亮在社区的每一天
去签到