目录
一、红黑树的概念
红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或 Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,
红黑树确保——没有一条路径会比其他路径长出两倍,因而是接近平衡的
二、红黑树的性质
1. 每个结点不是红色就是黑色
2. 根节点是黑色的
3. 如果一个节点是红色的,则它的两个孩子结点是黑色的 (没有连续的红节点)
4. 从任一结点到其所有后代叶结点的简单路径上,均包含相同数目的黑结点
5. 每个叶子结点都是黑色的(此处的叶子结点指的是NIL空结点)
最优情况:全黑或每条路径都是一黑一红的满二叉树,高度logN
最差情况:每颗子树左子树全黑,右子树一黑一红。高度2*logN。
可以发现,最坏情况的时间复杂度和AVL树一样,都是O(logN),但是红黑树这种近似平衡的结构减少了大量旋转,综合性能优于AVL树。
三、红黑树节点的定义
enum Colour
{
RED,
BLACK
};
template<class K, class V>
struct RBTreeNode
{
RBTreeNode<K, V>* _left;
RBTreeNode<K, V>* _right;
RBTreeNode<K, V>* _parent;
pair<K, V> _kv;
Colour _col;
RBTreeNode(const pair<K, V>& kv)
:_left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _kv(kv)
, _col(RED)
{}
};
四、红黑树的插入(步骤)
1.为什么新插入的节点必须给红色?
(1)新节点给红色,可能出现连续红节点
(2)如果新节点给黑色,必定会违反性质4(其每条路径的黑色节点数量相同)
2、插入红色节点后,判定红黑树性质是否被破坏
因为新节点的默认颜色是红色,所以
(1)双亲节点的颜色是黑色,没有违反红黑树任何 性质,则不需要调整;
(2)双亲节点为红色,就会出现连续的红节点,此时需要对红黑树分情况来讨论:见下一部分
五、插入出现连续红节点情况分析+图解(看uncle节点)
约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点
下面的分析都是以p为g的左孩子为例
5.1、uncle存在且为红
cur插入后,p和u变黑,g变红
(1)g没有父亲,g为根,g变黑
(2)g有父亲。其为黑,结束;其为红,后把g当成cur,继续向上调整
5.2、uncle不存在
u不存在,则cur一定是新插入的节点。
(如果cur不是新插入的节点,则cur和p一定有一个节点是黑色,否则每条路径黑色节点不相同)
下图为解释:
1、单旋
右单旋
2、双旋
左单旋 + 右单旋
5.3、uncle存在且为黑
uncle存在且为黑,是情况一变来的,所以cur原来的节点一定是黑色的。
现在其是红色的原因是,cur的子树在调整过程中将cur的颜色由黑变红。
1、单旋
右单旋
2、双旋
左单旋 + 右单旋
六、插入总结
1、红黑树插入的两种步骤
1、uncle存在且为红
2、uncle不存在 或者 uncle存在且为黑
通过分析,
uncle不存在的单旋 和 uncle存在且为黑的单旋 可以写在一起,
uncle不存在的双旋 和 uncle存在且为黑的双旋 可以写在一起,
不论uncle存在或者不存在,都不影响此步的单旋或者双旋。
当p为g的右孩子时,操作都相反。
详细步骤见其中while (parent && parent->_col == RED)这一步。
2、插入代码
bool Insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
_root->_col = BLACK;
return true;
}
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
cur = new Node(kv);
cur->_col = RED;
if (parent->_kv.first < kv.first)
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
cur->_parent = parent;
while (parent && parent->_col == RED)
{
Node* grandfather = parent->_parent;
//p为g左孩子
if (parent == grandfather->_left)
{
Node* uncle = grandfather->_right;
// 情况1:u存在且为红
if (uncle && uncle->_col == RED)
{
// 变色
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
// 继续向上处理
cur = grandfather;
parent = cur->_parent;
}
else // u不存在 或 存在且为黑
{
//情况2.1 , 3.1
if (cur == parent->_left)
{
// g
// p
// c
RotateR(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else//情况2.2 , 3.2
{
// g
// p
// c
RotateL(parent);
RotateR(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
//p为g右孩子
else // parent == grandfather->_right
{
Node* uncle = grandfather->_left;
// u存在且为红
if (uncle && uncle->_col == RED)
{
// 变色
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
// 继续向上处理
cur = grandfather;
parent = cur->_parent;
}
else
{
if (cur == parent->_right)
{
// g
// p
// c
RotateL(grandfather);
grandfather->_col = RED;
parent->_col = BLACK;
}
else
{
// g
// p
// c
RotateR(parent);
RotateL(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
}
_root->_col = BLACK;
return true;
}
七、红黑树总结及代码
红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O(logN),红黑树不追求绝对平衡,只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数, 所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。
using namespace std;
enum Colour
{
RED,
BLACK
};
template<class K, class V>
struct RBTreeNode
{
RBTreeNode<K, V>* _left;
RBTreeNode<K, V>* _right;
RBTreeNode<K, V>* _parent;
pair<K, V> _kv;
Colour _col;
RBTreeNode(const pair<K, V>& kv)
:_left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _kv(kv)
, _col(RED)
{}
};
template<class K, class V>
struct RBTree
{
typedef RBTreeNode<K, V> Node;
public:
bool Insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
_root->_col = BLACK;
return true;
}
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
cur = new Node(kv);
cur->_col = RED;
if (parent->_kv.first < kv.first)
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
cur->_parent = parent;
while (parent && parent->_col == RED)
{
Node* grandfather = parent->_parent;
//p为g左孩子
if (parent == grandfather->_left)
{
Node* uncle = grandfather->_right;
// 情况1:u存在且为红
if (uncle && uncle->_col == RED)
{
// 变色
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
// 继续向上处理
cur = grandfather;
parent = cur->_parent;
}
else // u不存在 或 存在且为黑
{
//情况2.1 , 3.1
if (cur == parent->_left)
{
// g
// p
// c
RotateR(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else//情况2.2 , 3.2
{
// g
// p
// c
RotateL(parent);
RotateR(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
//p为g右孩子
else // parent == grandfather->_right
{
Node* uncle = grandfather->_left;
// u存在且为红
if (uncle && uncle->_col == RED)
{
// 变色
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
// 继续向上处理
cur = grandfather;
parent = cur->_parent;
}
else
{
if (cur == parent->_right)
{
// g
// p
// c
RotateL(grandfather);
grandfather->_col = RED;
parent->_col = BLACK;
}
else
{
// g
// p
// c
RotateR(parent);
RotateL(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
}
_root->_col = BLACK;
return true;
}
void RotateL(Node* parent)
{
++_rotateCount;
Node* cur = parent->_right;
Node* curleft = cur->_left;
parent->_right = curleft;
if (curleft)
{
curleft->_parent = parent;
}
cur->_left = parent;
Node* ppnode = parent->_parent;
parent->_parent = cur;
if (parent == _root)
{
_root = cur;
cur->_parent = nullptr;
}
else
{
if (ppnode->_left == parent)
{
ppnode->_left = cur;
}
else
{
ppnode->_right = cur;
}
cur->_parent = ppnode;
}
}
void RotateR(Node* parent)
{
++_rotateCount;
Node* cur = parent->_left;
Node* curright = cur->_right;
parent->_left = curright;
if (curright)
curright->_parent = parent;
Node* ppnode = parent->_parent;
cur->_right = parent;
parent->_parent = cur;
if (ppnode == nullptr)
{
_root = cur;
cur->_parent = nullptr;
}
else
{
if (ppnode->_left == parent)
{
ppnode->_left = cur;
}
else
{
ppnode->_right = cur;
}
cur->_parent = ppnode;
}
}
bool CheckColour(Node* root, int blacknum, int benchmark)
{
if (root == nullptr)
{
if (blacknum != benchmark)
return false;
return true;
}
if (root->_col == BLACK)
{
++blacknum;
}
if (root->_col == RED && root->_parent && root->_parent->_col == RED)
{
cout << root->_kv.first << "出现连续红色节点" << endl;
return false;
}
return CheckColour(root->_left, blacknum, benchmark)
&& CheckColour(root->_right, blacknum, benchmark);
}
bool IsBalance()
{
return IsBalance(_root);
}
bool IsBalance(Node* root)
{
if (root == nullptr)
return true;
if (root->_col != BLACK)
{
return false;
}
// 基准值
int benchmark = 0;
Node* cur = _root;
while (cur)
{
if (cur->_col == BLACK)
++benchmark;
cur = cur->_left;
}
return CheckColour(root, 0, benchmark);
}
int Height()
{
return Height(_root);
}
int Height(Node* root)
{
if (root == nullptr)
return 0;
int leftHeight = Height(root->_left);
int rightHeight = Height(root->_right);
return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}
private:
Node* _root = nullptr;
public:
int _rotateCount = 0;
};