一、硬件准备
阶段 |
推荐配置 |
最低要求 |
训练阶段 |
NVIDIA A100 80GB ×4 |
RTX 3090 24GB ×1 |
量化阶段 |
Intel Xeon Gold 6248R CPU |
i7-12700K + 64GB RAM |
部署阶段 |
Jetson Xavier NX开发套件 |
Raspberry Pi 4B 8GB |
二、软件环境搭建
conda create -n distil python=3.9
conda activate distil
pip install torch==2.0.1+cu117 -f https://download.pytorch.org/whl/torch_stable.html
pip install transformers==4.31.0 datasets==2.13.1
pip install onnx==1.14.0 onnxruntime==1.15.1
pip install tensorrt==8.6.1 --extra-index-url https://pypi.ngc.nvidia.com
sudo apt install cuda-toolkit-11-7
conda install -c conda-forge cudatoolkit-dev=11.7
三、分步骤实操流程
1. 教师模型准备
from transformers import AutoModelForSequenceClassification, AutoTokenizer
teacher = AutoModelForSequenceClassification.from_pretrained(
"deepseek-ai/deepseek-7b",
num_labels=5
)
from datasets import load_dataset
ds = load_dataset("your_dataset")
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=8,
fp16=True
)
trainer = Trainer(
model=teacher,
args=training_args,
train_dataset=ds["train"]
)
trainer.train()
2. 学生模型定义
import torch.nn as nn
class TinyLSTM(nn.Module):
def __init__(self, vocab_size=30000, hidden_size=128):