
九、ItemReader
居于块操作的步骤由一个ItemReader,一个ItemProcessor和一个ItemWriter组成,一个负责读取数据,一个负责处理数据,一个负责输出数据,上一章节讲完步骤,接下来就重点讲解Spring Batch 输入组件:ItemReader
ItemReader 是Spring Batch 提供的输入组件,规范接口是ItemReader, 里面有个read() 方法,我们可以实现该接口去定制输入逻辑。
public interface ItemReader<T> {
@Nullable
T read() throws Exception, UnexpectedInputException, ParseException, NonTransientResourceException;
}
Spring Batch 根据常用的输入类型,提供许多默认的实现,包括:平面文件、数据库、JMS资源和其他输入源等,接下来一起操作一下比较场景的输入场景。
9.1 读平面文件
平面文件一般指的都是简单行/多行结构的纯文本文件,比如记事本记录文件。与xml这种区别在于没有结构,没有标签的限制。Spring Batch默认使用 FlatFileItemReader 实现平面文件的输入。
9.1.1 方式1:delimited–字符串截取
需求:读取user.txt文件,解析出所有用户信息
user.txt
1#dafei#18
2#xiaofei#16
3#laofei#20
4#zhongfei#19
5#feifei#15
实体类
@Getter
@Setter
@ToString
public class User {
private Long id;
private String name;
private int age;
}
实现作业
package com.langfeiyes.batch._21_itemreader_flat;
import com.langfeiyes.batch._20_job_restart_allow.JobAllowRestartJob;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.io.Resource;
import java.util.List;
@SpringBootApplication
@EnableBatchProcessing
public class FlatReaderJob {
@Autowired
private JobBuilderFactory jobBuilderFactory;
@Autowired
private StepBuilderFactory stepBuilderFactory;
@Bean
public FlatFileItemReader<User> userItemReader(){
return new FlatFileItemReaderBuilder<User>()
.name("userItemReader")
.resource(new ClassPathResource("users.txt"))
.delimited().delimiter("#")
.names("id", "name", "age")
.targetType(User.class)
.build();
}
@Bean
public ItemWriter<User> itemWriter(){
return new ItemWriter<User>() {
@Override
public void write(List<? extends User> items) throws Exception {
items.forEach(System.err::println);
}
};
}
@Bean
public Step step(){
return stepBuilderFactory.get("step1")
.<User, User>chunk(1)
.reader(userItemReader())
.writer(itemWriter())
.build();
}
@Bean
public Job job(){
return jobBuilderFactory.get("flat-reader-job")
.start(step())
.build();
}
public static void main(String[] args) {
SpringApplication.run(FlatReaderJob.class, args);
}
}
核心在userItemReader() 实例方法
//FlatFileItemReader spring batch 平面文件读入类
//这个类操作特点:一行一行的读数据
@Bean
public FlatFileItemReader<User> userItemReader(){
return new FlatFileItemReaderBuilder<User>()
.name("userItemReader")
.resource(new ClassPathResource("users.txt")) //指定读取的文件
.delimited().delimiter("#") //读取出一行数据,该如何分割数据,默认以,分割,当前使用#号分割
.targetType(User.class) //读取出一行数据封装成什么对象
//给分割后数据打name标记,后续跟User对象属性进行映射
.names("id", "name", "age")
.build();
}
除了上面讲到的核心方法,FlatFileItemReaderBuilder还提供.fieldSetMapper .lineTokenizer 2个方法,用于定制文件解析与数据映射。
9.1.2 方式2:FieldSetMapper–字段映射
FlatFileItemReaderBuilder 提供的方法,用于字段映射,方法参数是一个FieldSetMapper接口对象
public interface FieldSetMapper<T> {
T mapFieldSet(FieldSet fieldSet) throws BindException;
}
FieldSet 字段集合,FlatFileItemReader 解析出一行数据,会将这行数据封装到FieldSet对象中。
我们用一个案例来解释一下FieldSetMapper 用法
编写users2.txt文件
1#dafei#18#广东#广州#天河区
2#xiaofei#16#四川#成都#武侯区
3#laofei#20#广西#桂林#雁山区
4#zhongfei#19#广东#广州#白云区
5#feifei#15#广东#广州#越秀区
用户对象
@Getter
@Setter
@ToString
public class User {
private Long id;
private String name;
private int age;
private String address;
}
观察,user2.txt文件中有 id name age province city area 按理用户对象属性应该一一对应,但是此时User只有address,也就是说,后续要将 province , city , area 合并成 address 地址值。此时怎么办?这是就需要自定义FieldSetMapper 啦。
public class UserFieldMapper implements FieldSetMapper<User> {
@Override
public User mapFieldSet(FieldSet fieldSet) throws BindException {
//自己定义映射逻辑
User User = new User();
User.setId(fieldSet.readLong("id"));
User.setAge(fieldSet.readInt("age"));
User.setName(fieldSet.readString("name"));
String addr = fieldSet.readString("province") + " "
+ fieldSet.readString("city") + " " + fieldSet.readString("area");
User.setAddress(addr);
return User;
}
}
上面代码实现FieldSet与User对象映射,将province city area 合并成一个属性address。另外readXxx 是FieldSet 独有的方法,Xxx是java基本类型。
package com.langfeiyes.batch._22_itemreader_flat_mapper;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import java.util.List;
@SpringBootApplication
@EnableBatchProcessing
public class MapperFlatReaderJob {
@Autowired
private JobBuilderFactory jobBuilderFactory;
@Autowired
private StepBuilderFactory stepBuilderFactory;
@Bean
public UserFieldMapper userFieldMapper(){
return new UserFieldMapper();
}
@Bean
public FlatFileItemReader<User> userItemReader(){
return new FlatFileItemReaderBuilder<User>()
.name("userMapperItemReader")
.resource(new ClassPathResource("users2.txt"))
.delimited().delimiter("#")
.names("id", "name", "age", "province", "city", "area")
.fieldSetMapper(userFieldMapper())
.build();
}
@Bean
public ItemWriter<User> itemWriter(){
return new ItemWriter<User>() {
@Override
public void write(List<? extends User> items) throws Exception {
items.forEach(System.err::println);
}
};
}
@Bean
public Step step(){
return stepBuilderFactory.get("step1")
.<User, User>chunk(1)
.reader(userItemReader())
.writer(itemWriter())
.build();
}
@Bean
public Job job(){
return jobBuilderFactory.get("mapper-flat-reader-job")
.start(step())
.build();
}
public static void main(String[] args) {
SpringApplication.run(MapperFlatReaderJob.class, args);
}
}
上面代码核心在userItemReader实例方法
.fieldSetMapper(userFieldMapper()) : 用上自定义的字段映射器
.names(“id”, “name”, “age”, “province”, “city”, “area”) : users2.txt 每一行使用#分割出现6列,给每一列取名字,然后将其封装到FieldSet对象中
.targetType(User.class) : 注意,使用了fieldSetMapper 之后,不需要在加上这行
9.2 读JSON文件
Spring Batch 也提供专门操作Json文档的API : JsonItemReader,具体使用且看案例
需求:读取下面json格式文档
[
{"id":1, "name":"dafei", "age":18},
{"id":2, "name":"xiaofei", "age":17},
{"id":3, "name":"zhongfei", "age":16},
{"id":4, "name":"laofei", "age":15},
{"id":5, "name":"feifei", "age":14}
]
封装成User对象
@Getter
@Setter
@ToString
public class User {
private Long id;
private String name;
private int age;
}
package com.langfeiyes.batch._23_itemreader_flat_json;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.json.JacksonJsonObjectReader;
import org.springframework.batch.item.json.JsonItemReader;
import org.springframework.batch.item.json.builder.JsonItemReaderBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import java.util.List;
@SpringBootApplication
@EnableBatchProcessing
public class JsonFlatReaderJob {
@Autowired
private JobBuilderFactory jobBuilderFactory;
@Autowired
private StepBuilderFactory stepBuilderFactory;
@Bean
public JsonItemReader<User> userItemReader(){
ObjectMapper objectMapper = new ObjectMapper();
JacksonJsonObjectReader<User> jsonObjectReader = new JacksonJsonObjectReader<>(User.class);
jsonObjectReader.setMapper(objectMapper);
return new JsonItemReaderBuilder<User>()
.name("userJsonItemReader")
.jsonObjectReader(jsonObjectReader)
.resource(new ClassPathResource("users.json"))
.build();
}
@Bean
public ItemWriter<User> itemWriter(){
return new ItemWriter<User>() {
@Override
public void write(List<? extends User> items) throws Exception {
items.forEach(System.err::println);
}
};
}
@Bean
public Step step(){
return stepBuilderFactory.get("step1")
.<User, User>chunk(1)
.reader(userItemReader())
.writer(itemWriter())
.build();
}
@Bean
public Job job(){
return jobBuilderFactory.get("json-flat-reader-job")
.start(step())
.build();
}
public static void main(String[] args) {
SpringApplication.run(JsonFlatReaderJob.class, args);
}
}
上面代码核心在:userItemReader() 实例方法,明确指定转换成json格式需要使用转换器,本次使用的Jackson
9.3 读数据库
下面是一张用户表user, 如果数据是存放在数据库中,那么又该怎么读取?
CREATE TABLE `user` (
`id` bigint NOT NULL AUTO_INCREMENT COMMENT '主键',
`name` varchar(255) DEFAULT NULL COMMENT '用户名',
`age` int DEFAULT NULL COMMENT '年龄',
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=6 DEFAULT CHARSET=utf8mb3;
INSERT INTO `user` VALUES (1, 'dafei', 18);
INSERT INTO `user` VALUES (2, 'xiaofei', 17);
INSERT INTO `user` VALUES (3, 'zhongfei', 16);
INSERT INTO `user` VALUES (4, 'laofei', 15);
INSERT INTO `user` VALUES (5, 'feifei', 14);
Spring Batch 提供2种从数据库中读取数据的方式:
9.3.1 居于游标方式
游标遍历时,获取数据表中某一条数据,如果使用JDBC操作,游标指向的那条数据会被封装到ResultSet中,如果想将数据从ResultSet读取出来,需要借助Spring Batch 提供RowMapper 实现表数据与实体对象的映射。
user表数据---->User对象
Spring Batch JDBC 实现数据表读取需要做几个准备
1>实体对象User
@Getter
@Setter
@ToString
public class User {
private Long id;
private String name;
private int age;
}
2>RowMapper 表与实体对象映射实现类
public class UserRowMapper implements RowMapper<User> {
@Override
public User mapRow(ResultSet rs, int rowNum) throws SQLException {
User user = new User();
user.setId(rs.getLong("id"));
user.setName(rs.getString("name"));
user.setAge(rs.getInt("age"));
return user;
}
}
3>JdbcCursorItemReader编写
package com.langfeiyes.batch._24_itemreader_db_cursor;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.database.JdbcCursorItemReader;
import org.springframework.batch.item.database.builder.JdbcCursorItemReaderBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import javax.sql.DataSource;
import java.util.List;
@SpringBootApplication
@EnableBatchProcessing
public class CursorDBReaderJob {
@Autowired
private JobBuilderFactory jobBuilderFactory;
@Autowired
private StepBuilderFactory stepBuilderFactory;
@Autowired
private DataSource dataSource;
@Bean
public UserRowMapper userRowMapper(){
return new UserRowMapper();
}
@Bean
public JdbcCursorItemReader<User> userItemReader(){
return new JdbcCursorItemReaderBuilder<User>()
.name("userCursorItemReader")
.dataSource(dataSource)
.sql("select * from user")
.rowMapper(userRowMapper())
.build();
}
@Bean
public ItemWriter<User> itemWriter(){
return new ItemWriter<User>() {
@Override
public void write(List<? extends User> items) throws Exception {
items.forEach(System.err::println);
}
};
}
@Bean
public Step step(){
return stepBuilderFactory.get("step1")
.<User, User>chunk(1)
.reader(userItemReader())
.writer(itemWriter())
.build();
}
@Bean
public Job job(){
return jobBuilderFactory.get("cursor-db-reader-job")
.start(step())
.build();
}
public static void main(String[] args) {
SpringApplication.run(CursorDBReaderJob.class, args);
}
}
解析:
1>操作数据库,需要引入DataSource
2>留意userItemReader() 方法,需要明确指定操作数据库sql
3>留意userItemReader() 方法,需要明确指定游标回来之后,数据映射规则:rowMapper
这里要注意,如果sql需要where 条件,需要额外定义
比如: 查询 age > 16的用户
@Bean
public JdbcCursorItemReader<User> userItemReader(){
return new JdbcCursorItemReaderBuilder<User>()
.name("userCursorItemReader")
.dataSource(dataSource)
.sql("select * from user where age > ?")
.rowMapper(userRowMapper())
//拼接参数
.preparedStatementSetter(new ArgumentPreparedStatementSetter(new Object[]{16}))
.build();
}
9.3.2 居于分页方式
*
*
游标的方式是查询出所有满足条件的数据,然后一条一条读取,而分页是按照指定设置的pageSize数,一次性读取pageSize条。
分页查询方式需要几个要素
1>实体对象,跟游标方式一样
2>RowMapper映射对象,跟游标方式一样
3>数据源,跟游标方式一样
4>PagingQueryProvider 分页逻辑提供者
package com.langfeiyes.batch._25_itemreader_db_page;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.database.JdbcCursorItemReader;
import org.springframework.batch.item.database.JdbcPagingItemReader;
import org.springframework.batch.item.database.PagingQueryProvider;
import org.springframework.batch.item.database.builder.JdbcCursorItemReaderBuilder;
import org.springframework.batch.item.database.builder.JdbcPagingItemReaderBuilder;
import org.springframework.batch.item.database.support.SqlPagingQueryProviderFactoryBean;
import org.springframework.batch.item.database.support.SqlitePagingQueryProvider;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.jdbc.core.ArgumentPreparedStatementSetter;
import javax.sql.DataSource;
import java.util.HashMap;
import java.util.List;
@SpringBootApplication
@EnableBatchProcessing
public class PageDBReaderJob {
@Autowired
private JobBuilderFactory jobBuilderFactory;
@Autowired
private StepBuilderFactory stepBuilderFactory;
@Autowired
private DataSource dataSource;
@Bean
public UserRowMapper userRowMapper(){
return new UserRowMapper();
}
@Bean
public PagingQueryProvider pagingQueryProvider() throws Exception {
SqlPagingQueryProviderFactoryBean factoryBean = new SqlPagingQueryProviderFactoryBean();
factoryBean.setDataSource(dataSource);
factoryBean.setSelectClause("select *"); //查询列
factoryBean.setFromClause("from user"); //查询的表
factoryBean.setWhereClause("where age > :age"); //where 条件
factoryBean.setSortKey("id"); //结果排序
return factoryBean.getObject();
}
@Bean
public JdbcPagingItemReader<User> userItemReader() throws Exception {
HashMap<String, Object> param = new HashMap<>();
param.put("age", 16);
return new JdbcPagingItemReaderBuilder<User>()
.name("userPagingItemReader")
.dataSource(dataSource) //数据源
.queryProvider(pagingQueryProvider()) //分页逻辑
.parameterValues(param) //条件
.pageSize(10) //每页显示条数
.rowMapper(userRowMapper()) //映射规则
.build();
}
@Bean
public ItemWriter<User> itemWriter(){
return new ItemWriter<User>() {
@Override
public void write(List<? extends User> items) throws Exception {
items.forEach(System.err::println);
}
};
}
@Bean
public Step step() throws Exception {
return stepBuilderFactory.get("step1")
.<User, User>chunk(1)
.reader(userItemReader())
.writer(itemWriter())
.build();
}
@Bean
public Job job() throws Exception {
return jobBuilderFactory.get("page-db-reader-job1")
.start(step())
.build();
}
public static void main(String[] args) {
SpringApplication.run(PageDBReaderJob.class, args);
}
}
解析:
1>需要提供pagingQueryProvider 用于拼接分页SQL
2>userItemReader() 组装分页查询逻辑。
9.4 读取异常
任何输入都有可能存在异常情况,那Spring Batch 如何应对输入异常情况呢? 3种操作逻辑:
1>跳过异常记录
这里逻辑是当Spring Batch 在读取数据时,根据各种意外情况抛出不同异常,ItemReader 可以按照约定跳过指定的异常,同时也可以限制跳过次数。
@Bean
public Step step() throws Exception {
return stepBuilderFactory.get("step1")
.<User, User>chunk(1)
.reader(userItemReader())
.writer(itemWriter())
.faultTolerant() //容错
.skip(Exception.class) //跳过啥异常
.noSkip(RuntimeException.class) //不能跳过啥异常
.skipLimit(10) //跳过异常次数
.skipPolicy(new SkipPolicy() {
@Override
public boolean shouldSkip(Throwable t, int skipCount) throws SkipLimitExceededException {
//定制跳过异常与异常次数
return false;
}
})
.build();
}
如果出错直接跳过去,这操作有点自欺欺人,并不是优雅的解决方案。开发可选下面这种。
2>异常记录记日志
所谓记录日志,就是当ItemReader 读取数据抛出异常时,将具体数据信息记录下来,方便后续人工接入。
具体实现使用ItemReader监听器。
public class ErrorItemReaderListener implements ItemReadListener {
@Override
public void beforeRead() {
}
@Override
public void afterRead(Object item) {
}
@Override
public void onReadError(Exception ex) {
System.out.println("记录读数据相关信息...");
}
}
3>放弃处理
这种异常在处理不是很重要数据时候使用。
十、ItemProcessor
前面我们多次讲过,居于块的读与写,中间还夹着一个ItemProcessor 条目处理。当我们通过ItemReader 将数据读取出来之后,你面临2个选择:
1>直接将数据转向输出
2>对读入的数据进行再加工。
如果选择第一种,那ItemProcessor 可以不用出现,如果选择第二种,就需要引入ItemProcessor 条目处理组件啦。
Spring Batch 为Processor 提供默认的处理器与自定义处理器2种模式以满足各种需求。
10.1 默认ItemProcessor
Spring Batch 提供现成的ItemProcessor 组件有4种:
10.1.1 ValidatingItemProcessor:校验处理器
这个好理解,很多时候ItemReader读出来的数据是相对原始的数据,并没有做过多的校验
数据文件users-validate.txt
1##18
2##16
3#laofei#20
4#zhongfei#19
5#feifei#15
比如上面文本数据,第一条,第二条name数值没有指定,在ItemReader 读取之后,必定将 “” 空串封装到User name属性中,语法上没有错,但逻辑上可以做文章,比如:用户名不为空。
解决上述问题,可以使用Spring Batch 提供ValidatingItemProcessor 校验器处理。
接下来我们看下ValidatingItemProcessor 怎么实现
1>导入校验依赖
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-validation</artifactId>
</dependency>
2>定义实体对象
@Getter
@Setter
@ToString
public class User {
private Long id;
@NotBlank(message = "用户名不能为null或空串")
private String name;
private int age;
}
3>实现
package com.langfeiyes.batch._26_itemprocessor_validate;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.validator.BeanValidatingItemProcessor;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.util.StringUtils;
import java.util.List;
@SpringBootApplication
@EnableBatchProcessing
public class ValidationProcessorJob {
@Autowired
private JobBuilderFactory jobBuilderFactory;
@Autowired
private StepBuilderFactory stepBuilderFactory;
@Bean
public FlatFileItemReader<User> userItemReader(){
return new FlatFileItemReaderBuilder<User>()
.name("userItemReader")
.resource(new ClassPathResource("users-validate.txt"))
.delimited().delimiter("#")
.names("id", "name", "age")
.targetType(User.class)
.build();
}
@Bean
public ItemWriter<User> itemWriter(){
return new ItemWriter<User>() {
@Override
public void write(List<? extends User> items) throws Exception {
items.forEach(System.err::println);
}
};
}
@Bean
public BeanValidatingItemProcessor<User> beanValidatingItemProcessor(){
BeanValidatingItemProcessor<User> beanValidatingItemProcessor = new BeanValidatingItemProcessor<>();
beanValidatingItemProcessor.setFilter(true); //不满足条件丢弃数据
return beanValidatingItemProcessor;
}
@Bean
public Step step(){
return stepBuilderFactory.get("step1")
.<User, User>chunk(1)
.reader(userItemReader())
.processor(beanValidatingItemProcessor())
.writer(itemWriter())
.build();
}
@Bean
public Job job(){
return jobBuilderFactory.get("validate-processor-job4")
.start(step())
.build();
}
public static void main(String[] args) {
SpringApplication.run(ValidationProcessorJob.class, args);
}
}
解析:
1>核心是beanValidatingItemProcessor() 实例方法,核心BeanValidatingItemProcessor 类是Spring Batch 提供现成的Validator校验类,这里直接使用即可。BeanValidatingItemProcessor 是 ValidatingItemProcessor 子类
2> step()实例方法,多了**.processor(beanValidatingItemProcessor())** 操作,引入ItemProcessor 组件。
10.1.2 ItemProcessorAdapter:适配器处理器
开发中,很多的校验逻辑已经有现成的啦,那做ItemProcessor处理时候,是否能使用现成逻辑呢?答案 是:yes
比如:现有处理逻辑:将User对象中name转换成大写
public class UserServiceImpl{
public User toUppeCase(User user){
user.setName(user.getName().toUpperCase());
return user;
}
}
新建users-adapter.txt 文件,用于测试
1#dafei#18
2#xiaofei#16
3#laofei#20
4#zhongfei#19
5#feifei#15
完整的逻辑
package com.langfeiyes.batch._27_itemprocessor_adapter;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.adapter.ItemProcessorAdapter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import java.util.List;
@SpringBootApplication
@EnableBatchProcessing
public class AdapterProcessorJob {
@Autowired
private JobBuilderFactory jobBuilderFactory;
@Autowired
private StepBuilderFactory stepBuilderFactory;
@Bean
public FlatFileItemReader<User> userItemReader(){
return new FlatFileItemReaderBuilder<User>()
.name("userItemReader")
.resource(new ClassPathResource("users-adapter.txt"))
.delimited().delimiter("#")
.names("id", "name", "age")
.targetType(User.class)
.build();
}
@Bean
public ItemWriter<User> itemWriter(){
return new ItemWriter<User>() {
@Override
public void write(List<? extends User> items) throws Exception {
items.forEach(System.err::println);
}
};
}
@Bean
public UserServiceImpl userService(){
return new UserServiceImpl();
}
@Bean
public ItemProcessorAdapter<User, User> itemProcessorAdapter(){
ItemProcessorAdapter<User, User> adapter = new ItemProcessorAdapter<>();
adapter.setTargetObject(userService());
adapter.setTargetMethod("toUppeCase");
return adapter;
}
@Bean
public Step step(){
return stepBuilderFactory.get("step1")
.<User, User>chunk(1)
.reader(userItemReader())
.processor(itemProcessorAdapter())
.writer(itemWriter())
.build();
}
@Bean
public Job job(){
return jobBuilderFactory.get("adapter-processor-job")
.start(step())
.build();
}
public static void main(String[] args) {
SpringApplication.run(AdapterProcessorJob.class, args);
}
}
解析:
观察itemProcessorAdapter()实例方法,引入ItemProcessorAdapter 适配器类,绑定自定义的UserServiceImpl 类与toUppeCase方法,当ItemReader 读完之后,马上调用UserServiceImpl 类的toUppeCase 方法处理逻辑。方法传参数会被忽略,ItemProcessor会自动处理。
10.1.3 ScriptItemProcessor:脚本处理器
前面要实现User name 变大写,需要大费周折,又定义类,又是定义方法,能不能简化一点。答案也是yes, Spring Batch 提供js脚本的形式,将上面逻辑写到js文件中,加载这文件,就可以实现,省去定义类,定义方法的麻烦。
需求:使用js脚本方式实现用户名大写处理
userScript.js
item.setName(item.getName().toUpperCase());
item;
这里注意:
1>item是约定的单词,表示ItemReader读除来每个条目
2>userScript.js文件放置到resource资源文件中
完整代码
package com.langfeiyes.batch._28_itemprocessor_script;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.support.ScriptItemProcessor;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import java.util.List;
@SpringBootApplication
@EnableBatchProcessing
public class ScriptProcessorJob {
@Autowired
private JobBuilderFactory jobBuilderFactory;
@Autowired
private StepBuilderFactory stepBuilderFactory;
@Bean
public FlatFileItemReader<User> userItemReader(){
return new FlatFileItemReaderBuilder<User>()
.name("userItemReader")
.resource(new ClassPathResource("users-adapter.txt"))
.delimited().delimiter("#")
.names("id", "name", "age")
.targetType(User.class)
.build();
}
@Bean
public ItemWriter<User> itemWriter(){
return new ItemWriter<User>() {
@Override
public void write(List<? extends User> items) throws Exception {
items.forEach(System.err::println);
}
};
}
@Bean
public ScriptItemProcessor<User, User> scriptItemProcessor(){
ScriptItemProcessor<User, User> scriptItemProcessor = new ScriptItemProcessor();
scriptItemProcessor.setScript(new ClassPathResource("userScript.js"));
return scriptItemProcessor;
}
@Bean
public Step step(){
return stepBuilderFactory.get("step1")
.<User, User>chunk(1)
.reader(userItemReader())
.processor(scriptItemProcessor())
.writer(itemWriter())
.build();
}
@Bean
public Job job(){
return jobBuilderFactory.get("script-processor-job")
.start(step())
.build();
}
public static void main(String[] args) {
SpringApplication.run(ScriptProcessorJob.class, args);
}
}
解析:
核心还是scriptItemProcessor() 实例方法,ScriptItemProcessor 类用于加载js 脚本并处理js脚本。
10.1.4 CompositeItemProcessor:组合处理器
CompositeItemProcessor是一个ItemProcessor处理组合,类似于过滤器链,数据先经过第一个处理器,然后再经过第二个处理器,直到最后。前一个处理器处理的结果,是后一个处理器的输出。
*
*
需求:将解析出来用户name进行判空处理,并将name属性转换成大写
1>读取文件:users-validate.txt
1##18
2##16
3#laofei#20
4#zhongfei#19
5#feifei#15
2>封装的实体对象
@Getter
@Setter
@ToString
public class User {
private Long id;
@NotBlank(message = "用户名不能为null或空串")
private String name;
private int age;
}
3>用于转换大写工具类
public class UserServiceImpl {
public User toUppeCase(User user){
user.setName(user.getName().toUpperCase());
return user;
}
}
4>完整代码
package com.langfeiyes.batch._29_itemprocessor_composite;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.adapter.ItemProcessorAdapter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.support.CompositeItemProcessor;
import org.springframework.batch.item.validator.BeanValidatingItemProcessor;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import java.util.Arrays;
import java.util.List;
@SpringBootApplication
@EnableBatchProcessing
public class CompositeProcessorJob {
@Autowired
private JobBuilderFactory jobBuilderFactory;
@Autowired
private StepBuilderFactory stepBuilderFactory;
@Bean
public FlatFileItemReader<User> userItemReader(){
return new FlatFileItemReaderBuilder<User>()
.name("userItemReader")
.resource(new ClassPathResource("users-validate.txt"))
.delimited().delimiter("#")
.names("id", "name", "age")
.targetType(User.class)
.build();
}
@Bean
public ItemWriter<User> itemWriter(){
return new ItemWriter<User>() {
@Override
public void write(List<? extends User> items) throws Exception {
items.forEach(System.err::println);
}
};
}
@Bean
public UserServiceImpl userService(){
return new UserServiceImpl();
}
@Bean
public BeanValidatingItemProcessor<User> beanValidatingItemProcessor(){
BeanValidatingItemProcessor<User> beanValidatingItemProcessor = new BeanValidatingItemProcessor<>();
beanValidatingItemProcessor.setFilter(true); //不满足条件丢弃数据
return beanValidatingItemProcessor;
}
@Bean
public ItemProcessorAdapter<User, User> itemProcessorAdapter(){
ItemProcessorAdapter<User, User> adapter = new ItemProcessorAdapter<>();
adapter.setTargetObject(userService());
adapter.setTargetMethod("toUppeCase");
return adapter;
}
@Bean
public CompositeItemProcessor<User, User> compositeItemProcessor(){
CompositeItemProcessor<User, User> compositeItemProcessor = new CompositeItemProcessor<>();
compositeItemProcessor.setDelegates(Arrays.asList(
beanValidatingItemProcessor(), itemProcessorAdapter()
));
return compositeItemProcessor;
}
@Bean
public Step step(){
return stepBuilderFactory.get("step1")
.<User, User>chunk(1)
.reader(userItemReader())
.processor(compositeItemProcessor())
.writer(itemWriter())
.build();
}
@Bean
public Job job(){
return jobBuilderFactory.get("composite-processor-job")
.start(step())
.build();
}
public static void main(String[] args) {
SpringApplication.run(CompositeProcessorJob.class, args);
}
}
解析:
核心代码:compositeItemProcessor() 实例方法,使用setDelegates 操作将其他ItemProcessor 处理合并成一个。
10.2 自定义ItemProcessor处理器
除去上面默认的几种处理器外,Spring Batch 也允许我们自定义,具体做法只需要实现ItemProcessor接口即可
需求:自定义处理器,筛选出id为偶数的用户
1>定义读取文件user.txt
1#dafei#18
2#xiaofei#16
3#laofei#20
4#zhongfei#19
5#feifei#15
2>定义实体对象
@Getter
@Setter
@ToString
public class User {
private Long id;
private String name;
private int age;
}
3>自定义处理器
//自定义
public class CustomizeItemProcessor implements ItemProcessor<User,User> {
@Override
public User process(User item) throws Exception {
//id 为偶数的用户放弃
//返回null时候 读入的item会被放弃,不会进入itemwriter
return item.getId() % 2 != 0 ? item : null;
}
}
4>完整代码
package com.langfeiyes.batch._30_itemprocessor_customize;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import java.util.List;
@SpringBootApplication
@EnableBatchProcessing
public class CustomizeProcessorJob {
@Autowired
private JobBuilderFactory jobBuilderFactory;
@Autowired
private StepBuilderFactory stepBuilderFactory;
@Bean
public FlatFileItemReader<User> userItemReader(){
return new FlatFileItemReaderBuilder<User>()
.name("userItemReader")
.resource(new ClassPathResource("users.txt"))
.delimited().delimiter("#")
.names("id", "name", "age")
.targetType(User.class)
.build();
}
@Bean
public ItemWriter<User> itemWriter(){
return new ItemWriter<User>() {
@Override
public void write(List<? extends User> items) throws Exception {
items.forEach(System.err::println);
}
};
}
@Bean
public CustomizeItemProcessor customizeItemProcessor(){
return new CustomizeItemProcessor();
}
@Bean
public Step step(){
return stepBuilderFactory.get("step1")
.<User, User>chunk(1)
.reader(userItemReader())
.processor(customizeItemProcessor())
.writer(itemWriter())
.build();
}
@Bean
public Job job(){
return jobBuilderFactory.get("customize-processor-job")
.start(step())
.build();
}
public static void main(String[] args) {
SpringApplication.run(CustomizeProcessorJob.class, args);
}
}
十一、ItemWriter
有输入那肯定有输出,前面讲了输入ItemReader,接下来就看本篇的输出器:ItemWriter, Spring Batch提供的数据输出组件与数据输入组件是成对,也就是说有啥样子的输入组件,就有啥样子的输出组件。
11.1 输出平面文件
当将读入的数据输出到纯文本文件时,可以通过FlatFileItemWriter 输出器实现。
需求:将user.txt中数据读取出来,输出到outUser.txt文件中
1>定义user.txt文件
1#dafei#18
2#xiaofei#16
3#laofei#20
4#zhongfei#19
5#feifei#15
2>定义实体对象
@Getter
@Setter
@ToString
public class User {
private Long id;
private String name;
private int age;
}
3>实现代码
package com.langfeiyes.batch._31_itemwriter_flat;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.FlatFileItemWriter;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.file.builder.FlatFileItemWriterBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.io.PathResource;
import java.util.List;
@SpringBootApplication
@EnableBatchProcessing
public class FlatWriteJob {
@Autowired
private JobBuilderFactory jobBuilderFactory;
@Autowired
private StepBuilderFactory stepBuilderFactory;
@Bean
public FlatFileItemReader<User> userItemReader(){
return new FlatFileItemReaderBuilder<User>()
.name("userItemReader")
.resource(new ClassPathResource("users.txt"))
.delimited().delimiter("#")
.names("id", "name", "age")
.targetType(User.class)
.build();
}
@Bean
public FlatFileItemWriter<User> itemWriter(){
return new FlatFileItemWriterBuilder<User>()
.name("userItemWriter")
.resource(new PathResource("c:/outUser.txt")) //输出的文件
.formatted() //数据格式指定
.format("id: %s,姓名:%s,年龄:%s") //输出数据格式
.names("id", "name", "age") //需要输出属性
.build();
}
@Bean
public Step step(){
return stepBuilderFactory.get("step1")
.<User, User>chunk(1)
.reader(userItemReader())
.writer(itemWriter())
.build();
}
@Bean
public Job job(){
return jobBuilderFactory.get("flat-writer-job")
.start(step())
.build();
}
public static void main(String[] args) {
SpringApplication.run(FlatWriteJob.class, args);
}
}
解析:
上面代码核心是itemWriter() 方法,设置到itemWrite读取器配置与输出
id: 1,姓名:dafei,年龄:18
id: 2,姓名:xiaofei,年龄:16
id: 3,姓名:laofei,年龄:20
id: 4,姓名:zhongfei,年龄:19
id: 5,姓名:feifei,年龄:15
一些拓展
@Bean
public FlatFileItemWriter<User> itemWriter(){
return new FlatFileItemWriterBuilder<User>()
.name("userItemWriter")
.resource(new PathResource("c:/outUser.txt")) //输出的文件
.formatted() //数据格式指定
.format("id: %s,姓名:%s,年龄:%s") //输出数据格式
.names("id", "name", "age") //需要输出属性
.shouldDeleteIfEmpty(true) //如果读入数据为空,输出时创建文件直接删除
.shouldDeleteIfExists(true) //如果输出文件已经存在,则删除
.append(true) //如果输出文件已经存在, 不删除,直接追加到现有文件中
.build();
}
11.2 输出Json文件
当将读入的数据输出到Json文件时,可以通过JsonFileItemWriter输出器实现。
需求:将user.txt中数据读取出来,输出到outUser.json文件中
沿用上面的user.txt, user对象将数据输出到outUser.json
package com.langfeiyes.batch._32_itemwriter_json;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.FlatFileItemWriter;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.file.builder.FlatFileItemWriterBuilder;
import org.springframework.batch.item.json.JacksonJsonObjectMarshaller;
import org.springframework.batch.item.json.JsonFileItemWriter;
import org.springframework.batch.item.json.builder.JsonFileItemWriterBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.io.PathResource;
@SpringBootApplication
@EnableBatchProcessing
public class JsonWriteJob {
@Autowired
private JobBuilderFactory jobBuilderFactory;
@Autowired
private StepBuilderFactory stepBuilderFactory;
@Bean
public FlatFileItemReader<User> userItemReader(){
return new FlatFileItemReaderBuilder<User>()
.name("userItemReader")
.resource(new ClassPathResource("users.txt"))
.delimited().delimiter("#")
.names("id", "name", "age")
.targetType(User.class)
.build();
}
@Bean
public JacksonJsonObjectMarshaller<User> objectMarshaller(){
JacksonJsonObjectMarshaller marshaller = new JacksonJsonObjectMarshaller();
return marshaller;
}
@Bean
public JsonFileItemWriter<User> itemWriter(){
return new JsonFileItemWriterBuilder<User>()
.name("jsonUserItemWriter")
.resource(new PathResource("c:/outUser.json"))
.jsonObjectMarshaller(objectMarshaller())
.build();
}
@Bean
public Step step(){
return stepBuilderFactory.get("step1")
.<User, User>chunk(1)
.reader(userItemReader())
.writer(itemWriter())
.build();
}
@Bean
public Job job(){
return jobBuilderFactory.get("json-writer-job")
.start(step())
.build();
}
public static void main(String[] args) {
SpringApplication.run(JsonWriteJob.class, args);
}
}
结果:
[
{"id":1,"name":"dafei","age":18},
{"id":2,"name":"xiaofei","age":16},
{"id":3,"name":"laofei","age":20},
{"id":4,"name":"zhongfei","age":19},
{"id":5,"name":"feifei","age":15}
]
解析:
1>itemWriter() 实例方法构建JsonFileItemWriter 实例,需要明确指定Json格式装配器
2>Spring Batch默认提供装配器有2个:JacksonJsonObjectMarshaller GsonJsonObjectMarshaller 分别对应Jackson 跟 Gson 2种json格式解析逻辑,本案例用的是Jackson
11.3 输出数据库
当将读入的数据需要输出到数据库时,可以通过JdbcBatchItemWriter输出器实现。
需求:将user.txt中数据读取出来,输出到数据库user表中
沿用上面的user.txt, user对象将数据输出到user表中
1>定义操作数据库预编译类
//写入数据库需要操作insert sql, 使用预编译就需要明确指定参数值
public class UserPreStatementSetter implements ItemPreparedStatementSetter<User> {
@Override
public void setValues(User item, PreparedStatement ps) throws SQLException {
ps.setLong(1, item.getId());
ps.setString(2, item.getName());
ps.setInt(3, item.getAge());
}
}
2>完整代码
package com.langfeiyes.batch._33_itemwriter_db;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.database.JdbcBatchItemWriter;
import org.springframework.batch.item.database.builder.JdbcBatchItemWriterBuilder;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.json.JacksonJsonObjectMarshaller;
import org.springframework.batch.item.json.JsonFileItemWriter;
import org.springframework.batch.item.json.builder.JsonFileItemWriterBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.io.PathResource;
import javax.sql.DataSource;
@SpringBootApplication
@EnableBatchProcessing
public class JdbcWriteJob {
@Autowired
private JobBuilderFactory jobBuilderFactory;
@Autowired
private StepBuilderFactory stepBuilderFactory;
@Autowired
private DataSource dataSource;
@Bean
public FlatFileItemReader<User> userItemReader(){
return new FlatFileItemReaderBuilder<User>()
.name("userItemReader")
.resource(new ClassPathResource("users.txt"))
.delimited().delimiter("#")
.names("id", "name", "age")
.targetType(User.class)
.build();
}
@Bean
public UserPreStatementSetter preStatementSetter(){
return new UserPreStatementSetter();
}
@Bean
public JdbcBatchItemWriter<User> itemWriter(){
return new JdbcBatchItemWriterBuilder<User>()
.dataSource(dataSource)
.sql("insert into user(id, name, age) values(?,?,?)")
.itemPreparedStatementSetter(preStatementSetter())
.build();
}
@Bean
public Step step(){
return stepBuilderFactory.get("step1")
.<User, User>chunk(1)
.reader(userItemReader())
.writer(itemWriter())
.build();
}
@Bean
public Job job(){
return jobBuilderFactory.get("jdbc-writer-job")
.start(step())
.build();
}
public static void main(String[] args) {
SpringApplication.run(JdbcWriteJob.class, args);
}
}
解析:
核心代码在itemWriter() 实例方法中, 需要1>准备构建JdbcBatchItemWriter实例 2>提前准备数据, 3>准备sql语句 4>准备参数绑定器
11.4 输出多终端
上面几种输出方法都是一对一,真实开发可能没那么简单了,可能存在一对多,多个终端输出,此时怎么办?答案是使用Spring Batch 提供的CompositeItemWriter 组合输出器。
需求:将user.txt中数据读取出来,输出到outUser.txt/outUser.json/数据库user表中
沿用上面的user.txt, user对象将数据输出到outUser.txt/outUser.json/user表中
package com.langfeiyes.batch._34_itemwriter_composite;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.database.JdbcBatchItemWriter;
import org.springframework.batch.item.database.builder.JdbcBatchItemWriterBuilder;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.FlatFileItemWriter;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.batch.item.file.builder.FlatFileItemWriterBuilder;
import org.springframework.batch.item.json.JacksonJsonObjectMarshaller;
import org.springframework.batch.item.json.JsonFileItemWriter;
import org.springframework.batch.item.json.builder.JsonFileItemWriterBuilder;
import org.springframework.batch.item.support.CompositeItemWriter;
import org.springframework.batch.item.support.builder.CompositeItemWriterBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.io.PathResource;
import javax.sql.DataSource;
import java.util.Arrays;
@SpringBootApplication
@EnableBatchProcessing
public class CompositeWriteJob {
@Autowired
private JobBuilderFactory jobBuilderFactory;
@Autowired
private StepBuilderFactory stepBuilderFactory;
@Autowired
public DataSource dataSource;
@Bean
public FlatFileItemReader<User> userItemReader(){
return new FlatFileItemReaderBuilder<User>()
.name("userItemReader")
.resource(new ClassPathResource("users.txt"))
.delimited().delimiter("#")
.names("id", "name", "age")
.targetType(User.class)
.build();
}
@Bean
public FlatFileItemWriter<User> flatFileItemWriter(){
return new FlatFileItemWriterBuilder<User>()
.name("userItemWriter")
.resource(new PathResource("c:/outUser.txt"))
.formatted() //数据格式指定
.format("id: %s,姓名:%s,年龄:%s") //输出数据格式
.names("id", "name", "age") //需要输出属性
.build();
}
@Bean
public JacksonJsonObjectMarshaller<User> objectMarshaller(){
JacksonJsonObjectMarshaller marshaller = new JacksonJsonObjectMarshaller();
return marshaller;
}
@Bean
public JsonFileItemWriter<User> jsonFileItemWriter(){
return new JsonFileItemWriterBuilder<User>()
.name("jsonUserItemWriter")
.resource(new PathResource("c:/outUser.json"))
.jsonObjectMarshaller(objectMarshaller())
.build();
}
@Bean
public UserPreStatementSetter preStatementSetter(){
return new UserPreStatementSetter();
}
@Bean
public JdbcBatchItemWriter<User> jdbcBatchItemWriter(){
return new JdbcBatchItemWriterBuilder<User>()
.dataSource(dataSource)
.sql("insert into user(id, name, age) values(?,?,?)")
.itemPreparedStatementSetter(preStatementSetter())
.build();
}
@Bean
public CompositeItemWriter<User> compositeItemWriter(){
return new CompositeItemWriterBuilder<User>()
.delegates(Arrays.asList(flatFileItemWriter(), jsonFileItemWriter(), jdbcBatchItemWriter()))
.build();
}
@Bean
public Step step(){
return stepBuilderFactory.get("step1")
.<User, User>chunk(1)
.reader(userItemReader())
.writer(compositeItemWriter())
.build();
}
@Bean
public Job job(){
return jobBuilderFactory.get("composite-writer-job")
.start(step())
.build();
}
public static void main(String[] args) {
SpringApplication.run(CompositeWriteJob.class, args);
}
}
解析:
代码没有啥技术难度,都是将前面的几种方式通过CompositeItemWriter 类整合在一起
@Bean
public CompositeItemWriter<User> compositeItemWriter(){
return new CompositeItemWriterBuilder<User>()
.delegates(Arrays.asList(flatFileItemWriter(), jsonFileItemWriter(), jdbcBatchItemWriter()))
.build();
}