0 前言
两幅灾前和灾后的遥感影像经过SARscape配准、滤波、辐射定标预处理之后,使用GDAL库分别使用SDWI阈值法和OSTU自动阈值法提取洪涝淹没范围
1 ENVI 5.6和SARscape5.6安装
通过网盘分享的文件:ENVI5(1).6
链接: https://pan.baidu.com/s/1mKcEkC3rJDxs4p_RuT64Gg?pwd=qwea 提取码: qwea (包含了ENVI5.6和SARscape 5.6)
ENVI 5.6软件安装教程 (安装ENVI5.6)
envi5.6+SARscape560安装(CSDN_20240623)_sarscape5.6安装教程-CSDN博客(安装SARscape)
安装很简单,对着教程一步步来,是不会出错的。
2 SARscape 对遥感影像进行预处理
我是对照着上面的文章进行预处理,但是在处理过程中发现了几个问题
2.1 没有下载精密轨道文件,处理后查看直方图发现值都是负数
下载精密轨道文件方法:3种方法下载Sentinel-1精密轨道数据_精密轨道数据下载-CSDN博客
假如下载的遥感影像日期为8月17日,哪么你要下载的轨道数据名称为
S1A_OPER_AUX_POEORB_OPOD_20230906T080631_V20230816T225942_20230818T005942.EOF,最后两个时间节点分别为成像前一天和成像后一天,最前面的哪个时间是生成轨道文件生成时间,这个不用管。
导入轨道文件
这个不能和原始SAR数据一起导入,SARscape会在导入SAR数据的时候在你设置的目录中去找轨道数据
下载Sentinel-1精密轨道数据(Poeorb)及如何使用-CSDN博客
2.2 导入DEM数据进行配准和辐射定标
[SARscape] 将DEM数据导入到SARscape软件_sarscape dem ftp地址-CSDN博客
一定要导入DEM数据
3 SWDI和OSTU
import rasterio
from rasterio import features
import numpy as np
from skimage.filters import threshold_otsu
from skimage.morphology import remove_small_objects, binary_closing, square
import geopandas as gpd
from shapely.geometry import shape
from shapely.ops import unary_union
import os
def extract_flood_area(pre_vv_path, post_vv_path, output_shp,
min_pixel_size=50, min_area=10000, closing_kernel=5):
# ========== 1. 数据加载与差异计算 ==========
with rasterio.open(pre_vv_path) as src:
pre_vv = src.read(1)
profile = src.profile
transform = src.transform
crs = src.crs
with rasterio.open(post_vv_path) as src:
post_vv = src.read(1)
# 单位检查(可选)
if np.nanmin(pre_vv) < 0 or np.nanmin(post_vv) < 0:
print("检测到分贝单位(dB),确保两期数据单位一致。")
# 计算差异(单位需一致)
delta_vv = post_vv - pre_vv
# ========== 2. 大津法阈值分割 ==========
valid_pixels = delta_vv[~np.isnan(delta_vv)]
if len(valid_pixels) == 0:
raise ValueError("差异图无效,无有效数据用于阈值计算")
thresh = threshold_otsu(valid_pixels)
print(f"自动计算阈值: {thresh:.2f}") # 修正单位标注
# 生成二值掩膜
mask = (delta_vv < thresh).astype(bool)
# ========== 3. 后处理优化 ==========
mask_clean = remove_small_objects(mask, min_size=min_pixel_size)
mask_clean = binary_closing(mask_clean, square(closing_kernel))
# ========== 4. 矢量转换与保存 ==========
polygons = []
for geom, val in features.shapes(mask_clean.astype(np.uint8), transform=transform, connectivity=8):
if val == 1:
polygons.append(shape(geom))
if not polygons:
print("未检测到淹没区域")
return
merged_geoms = unary_union([geom for geom in polygons if geom.area > 0])
merged_polygons = list(merged_geoms.geoms) if merged_geoms.geom_type == 'MultiPolygon' else [merged_geoms]
gdf = gpd.GeoDataFrame(geometry=merged_polygons, crs=crs)
gdf['area'] = gdf.geometry.area
gdf_filtered = gdf[gdf['area'] > min_area]
if gdf_filtered.empty:
print("过滤后无有效淹没区域")
return
gdf_filtered.geometry = gdf_filtered.geometry.simplify(5.0)
gdf_filtered.to_file(output_shp)
print(f"成功提取 {len(gdf_filtered)} 个淹没区域,保存至:{output_shp}")
# 输入参数(示例)
pre_vv = r""
post_vv = r""
output_shp = r""
# 执行提取
extract_flood_area(
pre_vv_path=pre_vv,
post_vv_path=post_vv,
output_shp=output_shp,
min_pixel_size=300,
min_area=50000,
closing_kernel=3
)
双极化水体指数:
import numpy as np
import os
from osgeo import gdal
# 设置参数
threshold = # 根据实际情况调整NDPWI阈值
output_path = r'' # 输出结果路径
def extract_flood(ndpwi1_path, ndpwi2_path, output_path, threshold):
# 确保输出目录存在
os.makedirs(os.path.dirname(output_path), exist_ok=True)
# 打开724期NDPWI影像
ds1 = gdal.Open(ndpwi1_path, gdal.GA_ReadOnly)
if ds1 is None:
raise FileNotFoundError(f"无法打开文件:{ndpwi1_path}")
band1 = ds1.GetRasterBand(1)
ndpwi1 = band1.ReadAsArray().astype(np.float32)
nodata1 = band1.GetNoDataValue()
# 打开817期NDPWI影像
ds2 = gdal.Open(ndpwi2_path, gdal.GA_ReadOnly)
if ds2 is None:
raise FileNotFoundError(f"无法打开文件:{ndpwi2_path}")
band2 = ds2.GetRasterBand(1)
ndpwi2 = band2.ReadAsArray().astype(np.float32)
nodata2 = band2.GetNoDataValue()
# 处理NoData值
if nodata1 is not None:
ndpwi1[ndpwi1 == nodata1] = np.nan
if nodata2 is not None:
ndpwi2[ndpwi2 == nodata2] = np.nan
# 生成水体掩膜
water_724 = (ndpwi1 > threshold).astype(np.uint8)
water_817 = (ndpwi2 > threshold).astype(np.uint8)
# 提取新增淹没区域(817期为水且724期非水)
flood_mask = np.where((water_817 == 1) & (water_724 == 0), 1, 0)
# 处理NaN区域(设置为0)
flood_mask = np.where(np.isnan(ndpwi1) | np.isnan(ndpwi2), 0, flood_mask)
# 创建输出文件(关键修正部分)
driver = gdal.GetDriverByName('GTiff')
if driver is None:
raise RuntimeError("GDAL GeoTIFF驱动未加载,请检查环境配置")
# 确保删除已存在的文件
if os.path.exists(output_path):
driver.Delete(output_path)
# 创建新的输出数据集(添加OVERWRITE选项)
out_ds = driver.Create(
output_path,
ds1.RasterXSize,
ds1.RasterYSize,
1,
gdal.GDT_Byte,
options=['COMPRESS=LZW', 'OVERWRITE=YES'] # 添加压缩和覆盖选项
)
if out_ds is None:
raise RuntimeError(f"无法创建输出文件:{output_path},请检查路径权限或磁盘空间")
# 写入地理参考和投影
out_ds.SetGeoTransform(ds1.GetGeoTransform())
out_ds.SetProjection(ds1.GetProjection())
out_band = out_ds.GetRasterBand(1)
out_band.WriteArray(flood_mask)
out_band.SetNoDataValue(0)
out_band.FlushCache()
# 显式释放资源
out_band = None
out_ds = None
ds1 = ds2 = None
# 执行提取
try:
extract_flood(
ndpwi1_path=r'', # 注意检查路径拼写是否正确
ndpwi2_path=r'',
output_path=output_path,
threshold=
)
print("洪涝淹没范围提取完成!输出文件:", output_path)
except Exception as e:
print("处理失败:", str(e))