FPGA_AXI仿真回环(一)

发布于:2025-04-02 ⋅ 阅读:(22) ⋅ 点赞:(0)

1 manage ip 

自定义ip核

2. 选择芯片 创建ip

 

3. 点击tool ,create........

 4.x选择axi

 

5.给ip取名

 6.添加两个axi模块

主机

 从机

 7.选择编辑ip

 8 会弹出一个工程

 从模块中能够看到刚刚生成的主和从

 从文件夹中知道代码

 9 主机代码如下

 


`timescale 1 ns / 1 ps

	module axi_full_test_v1_0_M00_AXI #
	(
		// Users to add parameters here

		// User parameters ends
		// Do not modify the parameters beyond this line

		// Base address of targeted slave
		parameter  C_M_TARGET_SLAVE_BASE_ADDR	= 32'h40000000,
		// Burst Length. Supports 1, 2, 4, 8, 16, 32, 64, 128, 256 burst lengths
		parameter integer C_M_AXI_BURST_LEN	= 16,
		// Thread ID Width
		parameter integer C_M_AXI_ID_WIDTH	= 1,
		// Width of Address Bus
		parameter integer C_M_AXI_ADDR_WIDTH	= 32,
		// Width of Data Bus
		parameter integer C_M_AXI_DATA_WIDTH	= 32,
		// Width of User Write Address Bus
		parameter integer C_M_AXI_AWUSER_WIDTH	= 0,
		// Width of User Read Address Bus
		parameter integer C_M_AXI_ARUSER_WIDTH	= 0,
		// Width of User Write Data Bus
		parameter integer C_M_AXI_WUSER_WIDTH	= 0,
		// Width of User Read Data Bus
		parameter integer C_M_AXI_RUSER_WIDTH	= 0,
		// Width of User Response Bus
		parameter integer C_M_AXI_BUSER_WIDTH	= 0
	)
	(
		// Users to add ports here

		// User ports ends
		// Do not modify the ports beyond this line

		// Initiate AXI transactions
		input wire  INIT_AXI_TXN,
		// Asserts when transaction is complete
		output wire  TXN_DONE,
		// Asserts when ERROR is detected
		output reg  ERROR,
		// Global Clock Signal.
		input wire  M_AXI_ACLK,
		// Global Reset Singal. This Signal is Active Low
		input wire  M_AXI_ARESETN,
		// Master Interface Write Address ID
		output wire [C_M_AXI_ID_WIDTH-1 : 0] M_AXI_AWID,
		// Master Interface Write Address
		output wire [C_M_AXI_ADDR_WIDTH-1 : 0] M_AXI_AWADDR,
		// Burst length. The burst length gives the exact number of transfers in a burst
		output wire [7 : 0] M_AXI_AWLEN,
		// Burst size. This signal indicates the size of each transfer in the burst
		output wire [2 : 0] M_AXI_AWSIZE,
		// Burst type. The burst type and the size information, 
    // determine how the address for each transfer within the burst is calculated.
		output wire [1 : 0] M_AXI_AWBURST,
		// Lock type. Provides additional information about the
    // atomic characteristics of the transfer.
		output wire  M_AXI_AWLOCK,
		// Memory type. This signal indicates how transactions
    // are required to progress through a system.
		output wire [3 : 0] M_AXI_AWCACHE,
		// Protection type. This signal indicates the privilege
    // and security level of the transaction, and whether
    // the transaction is a data access or an instruction access.
		output wire [2 : 0] M_AXI_AWPROT,
		// Quality of Service, QoS identifier sent for each write transaction.
		output wire [3 : 0] M_AXI_AWQOS,
		// Optional User-defined signal in the write address channel.
		output wire [C_M_AXI_AWUSER_WIDTH-1 : 0] M_AXI_AWUSER,
		// Write address valid. This signal indicates that
    // the channel is signaling valid write address and control information.
		output wire  M_AXI_AWVALID,
		// Write address ready. This signal indicates that
    // the slave is ready to accept an address and associated control signals
		input wire  M_AXI_AWREADY,
		// Master Interface Write Data.
		output wire [C_M_AXI_DATA_WIDTH-1 : 0] M_AXI_WDATA,
		// Write strobes. This signal indicates which byte
    // lanes hold valid data. There is one write strobe
    // bit for each eight bits of the write data bus.
		output wire [C_M_AXI_DATA_WIDTH/8-1 : 0] M_AXI_WSTRB,
		// Write last. This signal indicates the last transfer in a write burst.
		output wire  M_AXI_WLAST,
		// Optional User-defined signal in the write data channel.
		output wire [C_M_AXI_WUSER_WIDTH-1 : 0] M_AXI_WUSER,
		// Write valid. This signal indicates that valid write
    // data and strobes are available
		output wire  M_AXI_WVALID,
		// Write ready. This signal indicates that the slave
    // can accept the write data.
		input wire  M_AXI_WREADY,
		// Master Interface Write Response.
		input wire [C_M_AXI_ID_WIDTH-1 : 0] M_AXI_BID,
		// Write response. This signal indicates the status of the write transaction.
		input wire [1 : 0] M_AXI_BRESP,
		// Optional User-defined signal in the write response channel
		input wire [C_M_AXI_BUSER_WIDTH-1 : 0] M_AXI_BUSER,
		// Write response valid. This signal indicates that the
    // channel is signaling a valid write response.
		input wire  M_AXI_BVALID,
		// Response ready. This signal indicates that the master
    // can accept a write response.
		output wire  M_AXI_BREADY,
		// Master Interface Read Address.
		output wire [C_M_AXI_ID_WIDTH-1 : 0] M_AXI_ARID,
		// Read address. This signal indicates the initial
    // address of a read burst transaction.
		output wire [C_M_AXI_ADDR_WIDTH-1 : 0] M_AXI_ARADDR,
		// Burst length. The burst length gives the exact number of transfers in a burst
		output wire [7 : 0] M_AXI_ARLEN,
		// Burst size. This signal indicates the size of each transfer in the burst
		output wire [2 : 0] M_AXI_ARSIZE,
		// Burst type. The burst type and the size information, 
    // determine how the address for each transfer within the burst is calculated.
		output wire [1 : 0] M_AXI_ARBURST,
		// Lock type. Provides additional information about the
    // atomic characteristics of the transfer.
		output wire  M_AXI_ARLOCK,
		// Memory type. This signal indicates how transactions
    // are required to progress through a system.
		output wire [3 : 0] M_AXI_ARCACHE,
		// Protection type. This signal indicates the privilege
    // and security level of the transaction, and whether
    // the transaction is a data access or an instruction access.
		output wire [2 : 0] M_AXI_ARPROT,
		// Quality of Service, QoS identifier sent for each read transaction
		output wire [3 : 0] M_AXI_ARQOS,
		// Optional User-defined signal in the read address channel.
		output wire [C_M_AXI_ARUSER_WIDTH-1 : 0] M_AXI_ARUSER,
		// Write address valid. This signal indicates that
    // the channel is signaling valid read address and control information
		output wire  M_AXI_ARVALID,
		// Read address ready. This signal indicates that
    // the slave is ready to accept an address and associated control signals
		input wire  M_AXI_ARREADY,
		// Read ID tag. This signal is the identification tag
    // for the read data group of signals generated by the slave.
		input wire [C_M_AXI_ID_WIDTH-1 : 0] M_AXI_RID,
		// Master Read Data
		input wire [C_M_AXI_DATA_WIDTH-1 : 0] M_AXI_RDATA,
		// Read response. This signal indicates the status of the read transfer
		input wire [1 : 0] M_AXI_RRESP,
		// Read last. This signal indicates the last transfer in a read burst
		input wire  M_AXI_RLAST,
		// Optional User-defined signal in the read address channel.
		input wire [C_M_AXI_RUSER_WIDTH-1 : 0] M_AXI_RUSER,
		// Read valid. This signal indicates that the channel
    // is signaling the required read data.
		input wire  M_AXI_RVALID,
		// Read ready. This signal indicates that the master can
    // accept the read data and response information.
		output wire  M_AXI_RREADY
	);


	// function called clogb2 that returns an integer which has the
	//value of the ceiling of the log base 2

	  // function called clogb2 that returns an integer which has the 
	  // value of the ceiling of the log base 2.                      
	  function integer clogb2 (input integer bit_depth);              
	  begin                                                           
	    for(clogb2=0; bit_depth>0; clogb2=clogb2+1)                   
	      bit_depth = bit_depth >> 1;                                 
	    end                                                           
	  endfunction                                                     

	// C_TRANSACTIONS_NUM is the width of the index counter for 
	// number of write or read transaction.
	 localparam integer C_TRANSACTIONS_NUM = clogb2(C_M_AXI_BURST_LEN-1);

	// Burst length for transactions, in C_M_AXI_DATA_WIDTHs.
	// Non-2^n lengths will eventually cause bursts across 4K address boundaries.
	 localparam integer C_MASTER_LENGTH	= 12;
	// total number of burst transfers is master length divided by burst length and burst size
	 localparam integer C_NO_BURSTS_REQ = C_MASTER_LENGTH-clogb2((C_M_AXI_BURST_LEN*C_M_AXI_DATA_WIDTH/8)-1);
	// Example State machine to initialize counter, initialize write transactions, 
	// initialize read transactions and comparison of read data with the 
	// written data words.
	parameter [1:0] IDLE = 2'b00, // This state initiates AXI4Lite transaction 
			// after the state machine changes state to INIT_WRITE 
			// when there is 0 to 1 transition on INIT_AXI_TXN
		INIT_WRITE   = 2'b01, // This state initializes write transaction,
			// once writes are done, the state machine 
			// changes state to INIT_READ 
		INIT_READ = 2'b10, // This state initializes read transaction
			// once reads are done, the state machine 
			// changes state to INIT_COMPARE 
		INIT_COMPARE = 2'b11; // This state issues the status of comparison 
			// of the written data with the read data	

	 reg [1:0] mst_exec_state;

	// AXI4LITE signals
	//AXI4 internal temp signals
	reg [C_M_AXI_ADDR_WIDTH-1 : 0] 	axi_awaddr;
	reg  	axi_awvalid;
	reg [C_M_AXI_DATA_WIDTH-1 : 0] 	axi_wdata;
	reg  	axi_wlast;
	reg  	axi_wvalid;
	reg  	axi_bready;
	reg [C_M_AXI_ADDR_WIDTH-1 : 0] 	axi_araddr;
	reg  	axi_arvalid;
	reg  	axi_rready;
	//write beat count in a burst
	reg [C_TRANSACTIONS_NUM : 0] 	write_index;
	//read beat count in a burst
	reg [C_TRANSACTIONS_NUM : 0] 	read_index;
	//size of C_M_AXI_BURST_LEN length burst in bytes
	wire [C_TRANSACTIONS_NUM+2 : 0] 	burst_size_bytes;
	//The burst counters are used to track the number of burst transfers of C_M_AXI_BURST_LEN burst length needed to transfer 2^C_MASTER_LENGTH bytes of data.
	reg [C_NO_BURSTS_REQ : 0] 	write_burst_counter;
	reg [C_NO_BURSTS_REQ : 0] 	read_burst_counter;
	reg  	start_single_burst_write;
	reg  	start_single_burst_read;
	reg  	writes_done;
	reg  	reads_done;
	reg  	error_reg;
	reg  	compare_done;
	reg  	read_mismatch;
	reg  	burst_write_active;
	reg  	burst_read_active;
	reg [C_M_AXI_DATA_WIDTH-1 : 0] 	expected_rdata;
	//Interface response error flags
	wire  	write_resp_error;
	wire  	read_resp_error;
	wire  	wnext;
	wire  	rnext;
	reg  	init_txn_ff;
	reg  	init_txn_ff2;
	reg  	init_txn_edge;
	wire  	init_txn_pulse;


	// I/O Connections assignments

	//I/O Connections. Write Address (AW)
	assign M_AXI_AWID	= 'b0;
	//The AXI address is a concatenation of the target base address + active offset range
	assign M_AXI_AWADDR	= C_M_TARGET_SLAVE_BASE_ADDR + axi_awaddr;
	//Burst LENgth is number of transaction beats, minus 1
	assign M_AXI_AWLEN	= C_M_AXI_BURST_LEN - 1;
	//Size should be C_M_AXI_DATA_WIDTH, in 2^SIZE bytes, otherwise narrow bursts are used
	assign M_AXI_AWSIZE	= clogb2((C_M_AXI_DATA_WIDTH/8)-1);
	//INCR burst type is usually used, except for keyhole bursts
	assign M_AXI_AWBURST	= 2'b01;
	assign M_AXI_AWLOCK	= 1'b0;
	//Update value to 4'b0011 if coherent accesses to be used via the Zynq ACP port. Not Allocated, Modifiable, not Bufferable. Not Bufferable since this example is meant to test memory, not intermediate cache. 
	assign M_AXI_AWCACHE	= 4'b0010;
	assign M_AXI_AWPROT	= 3'h0;
	assign M_AXI_AWQOS	= 4'h0;
	assign M_AXI_AWUSER	= 'b1;
	assign M_AXI_AWVALID	= axi_awvalid;
	//Write Data(W)
	assign M_AXI_WDATA	= axi_wdata;
	//All bursts are complete and aligned in this example
	assign M_AXI_WSTRB	= {(C_M_AXI_DATA_WIDTH/8){1'b1}};
	assign M_AXI_WLAST	= axi_wlast;
	assign M_AXI_WUSER	= 'b0;
	assign M_AXI_WVALID	= axi_wvalid;
	//Write Response (B)
	assign M_AXI_BREADY	= axi_bready;
	//Read Address (AR)
	assign M_AXI_ARID	= 'b0;
	assign M_AXI_ARADDR	= C_M_TARGET_SLAVE_BASE_ADDR + axi_araddr;
	//Burst LENgth is number of transaction beats, minus 1
	assign M_AXI_ARLEN	= C_M_AXI_BURST_LEN - 1;
	//Size should be C_M_AXI_DATA_WIDTH, in 2^n bytes, otherwise narrow bursts are used
	assign M_AXI_ARSIZE	= clogb2((C_M_AXI_DATA_WIDTH/8)-1);
	//INCR burst type is usually used, except for keyhole bursts
	assign M_AXI_ARBURST	= 2'b01;
	assign M_AXI_ARLOCK	= 1'b0;
	//Update value to 4'b0011 if coherent accesses to be used via the Zynq ACP port. Not Allocated, Modifiable, not Bufferable. Not Bufferable since this example is meant to test memory, not intermediate cache. 
	assign M_AXI_ARCACHE	= 4'b0010;
	assign M_AXI_ARPROT	= 3'h0;
	assign M_AXI_ARQOS	= 4'h0;
	assign M_AXI_ARUSER	= 'b1;
	assign M_AXI_ARVALID	= axi_arvalid;
	//Read and Read Response (R)
	assign M_AXI_RREADY	= axi_rready;
	//Example design I/O
	assign TXN_DONE	= compare_done;
	//Burst size in bytes
	assign burst_size_bytes	= C_M_AXI_BURST_LEN * C_M_AXI_DATA_WIDTH/8;
	assign init_txn_pulse	= (!init_txn_ff2) && init_txn_ff;


	//Generate a pulse to initiate AXI transaction.
	always @(posedge M_AXI_ACLK)										      
	  begin                                                                        
	    // Initiates AXI transaction delay    
	    if (M_AXI_ARESETN == 0 )                                                   
	      begin                                                                    
	        init_txn_ff <= 1'b0;                                                   
	        init_txn_ff2 <= 1'b0;                                                   
	      end                                                                               
	    else                                                                       
	      begin  
	        init_txn_ff <= INIT_AXI_TXN;
	        init_txn_ff2 <= init_txn_ff;                                                                 
	      end                                                                      
	  end     


	//--------------------
	//Write Address Channel
	//--------------------

	// The purpose of the write address channel is to request the address and 
	// command information for the entire transaction.  It is a single beat
	// of information.

	// The AXI4 Write address channel in this example will continue to initiate
	// write commands as fast as it is allowed by the slave/interconnect.
	// The address will be incremented on each accepted address transaction,
	// by burst_size_byte to point to the next address. 

	  always @(posedge M_AXI_ACLK)                                   
	  begin                                                                
	                                                                       
	    if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1 )                                           
	      begin                                                            
	        axi_awvalid <= 1'b0;                                           
	      end                                                              
	    // If previously not valid , start next transaction                
	    else if (~axi_awvalid && start_single_burst_write)                 
	      begin                                                            
	        axi_awvalid <= 1'b1;                                           
	      end                                                              
	    /* Once asserted, VALIDs cannot be deasserted, so axi_awvalid      
	    must wait until transaction is accepted */                         
	    else if (M_AXI_AWREADY && axi_awvalid)                             
	      begin                                                            
	        axi_awvalid <= 1'b0;                                           
	      end                                                              
	    else                                                               
	      axi_awvalid <= axi_awvalid;                                      
	    end                                                                
	                                                                       
	                                                                       
	// Next address after AWREADY indicates previous address acceptance    
	  always @(posedge M_AXI_ACLK)                                         
	  begin                                                                
	    if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1)                                            
	      begin                                                            
	        axi_awaddr <= 'b0;                                             
	      end                                                              
	    else if (M_AXI_AWREADY && axi_awvalid)                             
	      begin                                                            
	        axi_awaddr <= axi_awaddr + burst_size_bytes;                   
	      end                                                              
	    else                                                               
	      axi_awaddr <= axi_awaddr;                                        
	    end                                                                


	//--------------------
	//Write Data Channel
	//--------------------

	//The write data will continually try to push write data across the interface.

	//The amount of data accepted will depend on the AXI slave and the AXI
	//Interconnect settings, such as if there are FIFOs enabled in interconnect.

	//Note that there is no explicit timing relationship to the write address channel.
	//The write channel has its own throttling flag, separate from the AW channel.

	//Synchronization between the channels must be determined by the user.

	//The simpliest but lowest performance would be to only issue one address write
	//and write data burst at a time.

	//In this example they are kept in sync by using the same address increment
	//and burst sizes. Then the AW and W channels have their transactions measured
	//with threshold counters as part of the user logic, to make sure neither 
	//channel gets too far ahead of each other.

	//Forward movement occurs when the write channel is valid and ready

	  assign wnext = M_AXI_WREADY & axi_wvalid;                                   
	                                                                                    
	// WVALID logic, similar to the axi_awvalid always block above                      
	  always @(posedge M_AXI_ACLK)                                                      
	  begin                                                                             
	    if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1 )                                                        
	      begin                                                                         
	        axi_wvalid <= 1'b0;                                                         
	      end                                                                           
	    // If previously not valid, start next transaction                              
	    else if (~axi_wvalid && start_single_burst_write)                               
	      begin                                                                         
	        axi_wvalid <= 1'b1;                                                         
	      end                                                                           
	    /* If WREADY and too many writes, throttle WVALID                               
	    Once asserted, VALIDs cannot be deasserted, so WVALID                           
	    must wait until burst is complete with WLAST */                                 
	    else if (wnext && axi_wlast)                                                    
	      axi_wvalid <= 1'b0;                                                           
	    else                                                                            
	      axi_wvalid <= axi_wvalid;                                                     
	  end                                                                               
	                                                                                    
	                                                                                    
	//WLAST generation on the MSB of a counter underflow                                
	// WVALID logic, similar to the axi_awvalid always block above                      
	  always @(posedge M_AXI_ACLK)                                                      
	  begin                                                                             
	    if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1 )                                                        
	      begin                                                                         
	        axi_wlast <= 1'b0;                                                          
	      end                                                                           
	    // axi_wlast is asserted when the write index                                   
	    // count reaches the penultimate count to synchronize                           
	    // with the last write data when write_index is b1111                           
	    // else if (&(write_index[C_TRANSACTIONS_NUM-1:1])&& ~write_index[0] && wnext)  
	    else if (((write_index == C_M_AXI_BURST_LEN-2 && C_M_AXI_BURST_LEN >= 2) && wnext) || (C_M_AXI_BURST_LEN == 1 ))
	      begin                                                                         
	        axi_wlast <= 1'b1;                                                          
	      end                                                                           
	    // Deassrt axi_wlast when the last write data has been                          
	    // accepted by the slave with a valid response                                  
	    else if (wnext)                                                                 
	      axi_wlast <= 1'b0;                                                            
	    else if (axi_wlast && C_M_AXI_BURST_LEN == 1)                                   
	      axi_wlast <= 1'b0;                                                            
	    else                                                                            
	      axi_wlast <= axi_wlast;                                                       
	  end                                                                               
	                                                                                    
	                                                                                    
	/* Burst length counter. Uses extra counter register bit to indicate terminal       
	 count to reduce decode logic */                                                    
	  always @(posedge M_AXI_ACLK)                                                      
	  begin                                                                             
	    if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1 || start_single_burst_write == 1'b1)    
	      begin                                                                         
	        write_index <= 0;                                                           
	      end                                                                           
	    else if (wnext && (write_index != C_M_AXI_BURST_LEN-1))                         
	      begin                                                                         
	        write_index <= write_index + 1;                                             
	      end                                                                           
	    else                                                                            
	      write_index <= write_index;                                                   
	  end                                                                               
	                                                                                    
	                                                                                    
	/* Write Data Generator                                                             
	 Data pattern is only a simple incrementing count from 0 for each burst  */         
	  always @(posedge M_AXI_ACLK)                                                      
	  begin                                                                             
	    if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1)                                                         
	      axi_wdata <= 'b1;                                                             
	    //else if (wnext && axi_wlast)                                                  
	    //  axi_wdata <= 'b0;                                                           
	    else if (wnext)                                                                 
	      axi_wdata <= axi_wdata + 1;                                                   
	    else                                                                            
	      axi_wdata <= axi_wdata;                                                       
	    end                                                                             


	//----------------------------
	//Write Response (B) Channel
	//----------------------------

	//The write response channel provides feedback that the write has committed
	//to memory. BREADY will occur when all of the data and the write address
	//has arrived and been accepted by the slave.

	//The write issuance (number of outstanding write addresses) is started by 
	//the Address Write transfer, and is completed by a BREADY/BRESP.

	//While negating BREADY will eventually throttle the AWREADY signal, 
	//it is best not to throttle the whole data channel this way.

	//The BRESP bit [1] is used indicate any errors from the interconnect or
	//slave for the entire write burst. This example will capture the error 
	//into the ERROR output. 

	  always @(posedge M_AXI_ACLK)                                     
	  begin                                                                 
	    if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1 )                                            
	      begin                                                             
	        axi_bready <= 1'b0;                                             
	      end                                                               
	    // accept/acknowledge bresp with axi_bready by the master           
	    // when M_AXI_BVALID is asserted by slave                           
	    else if (M_AXI_BVALID && ~axi_bready)                               
	      begin                                                             
	        axi_bready <= 1'b1;                                             
	      end                                                               
	    // deassert after one clock cycle                                   
	    else if (axi_bready)                                                
	      begin                                                             
	        axi_bready <= 1'b0;                                             
	      end                                                               
	    // retain the previous value                                        
	    else                                                                
	      axi_bready <= axi_bready;                                         
	  end                                                                   
	                                                                        
	                                                                        
	//Flag any write response errors                                        
	  assign write_resp_error = axi_bready & M_AXI_BVALID & M_AXI_BRESP[1]; 


	//----------------------------
	//Read Address Channel
	//----------------------------

	//The Read Address Channel (AW) provides a similar function to the
	//Write Address channel- to provide the tranfer qualifiers for the burst.

	//In this example, the read address increments in the same
	//manner as the write address channel.

	  always @(posedge M_AXI_ACLK)                                 
	  begin                                                              
	                                                                     
	    if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1 )                                         
	      begin                                                          
	        axi_arvalid <= 1'b0;                                         
	      end                                                            
	    // If previously not valid , start next transaction              
	    else if (~axi_arvalid && start_single_burst_read)                
	      begin                                                          
	        axi_arvalid <= 1'b1;                                         
	      end                                                            
	    else if (M_AXI_ARREADY && axi_arvalid)                           
	      begin                                                          
	        axi_arvalid <= 1'b0;                                         
	      end                                                            
	    else                                                             
	      axi_arvalid <= axi_arvalid;                                    
	  end                                                                
	                                                                     
	                                                                     
	// Next address after ARREADY indicates previous address acceptance  
	  always @(posedge M_AXI_ACLK)                                       
	  begin                                                              
	    if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1)                                          
	      begin                                                          
	        axi_araddr <= 'b0;                                           
	      end                                                            
	    else if (M_AXI_ARREADY && axi_arvalid)                           
	      begin                                                          
	        axi_araddr <= axi_araddr + burst_size_bytes;                 
	      end                                                            
	    else                                                             
	      axi_araddr <= axi_araddr;                                      
	  end                                                                


	//--------------------------------
	//Read Data (and Response) Channel
	//--------------------------------

	 // Forward movement occurs when the channel is valid and ready   
	  assign rnext = M_AXI_RVALID && axi_rready;                            
	                                                                        
	                                                                        
	// Burst length counter. Uses extra counter register bit to indicate    
	// terminal count to reduce decode logic                                
	  always @(posedge M_AXI_ACLK)                                          
	  begin                                                                 
	    if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1 || start_single_burst_read)                  
	      begin                                                             
	        read_index <= 0;                                                
	      end                                                               
	    else if (rnext && (read_index != C_M_AXI_BURST_LEN-1))              
	      begin                                                             
	        read_index <= read_index + 1;                                   
	      end                                                               
	    else                                                                
	      read_index <= read_index;                                         
	  end                                                                   
	                                                                        
	                                                                        
	/*                                                                      
	 The Read Data channel returns the results of the read request          
	                                                                        
	 In this example the data checker is always able to accept              
	 more data, so no need to throttle the RREADY signal                    
	 */                                                                     
	  always @(posedge M_AXI_ACLK)                                          
	  begin                                                                 
	    if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1 )                  
	      begin                                                             
	        axi_rready <= 1'b0;                                             
	      end                                                               
	    // accept/acknowledge rdata/rresp with axi_rready by the master     
	    // when M_AXI_RVALID is asserted by slave                           
	    else if (M_AXI_RVALID)                       
	      begin                                      
	         if (M_AXI_RLAST && axi_rready)          
	          begin                                  
	            axi_rready <= 1'b0;                  
	          end                                    
	         else                                    
	           begin                                 
	             axi_rready <= 1'b1;                 
	           end                                   
	      end                                        
	    // retain the previous value                 
	  end                                            
	                                                                        
	//Check received read data against data generator                       
	  always @(posedge M_AXI_ACLK)                                          
	  begin                                                                 
	    if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1)                   
	      begin                                                             
	        read_mismatch <= 1'b0;                                          
	      end                                                               
	    //Only check data when RVALID is active                             
	    else if (rnext && (M_AXI_RDATA != expected_rdata))                  
	      begin                                                             
	        read_mismatch <= 1'b1;                                          
	      end                                                               
	    else                                                                
	      read_mismatch <= 1'b0;                                            
	  end                                                                   
	                                                                        
	//Flag any read response errors                                         
	  assign read_resp_error = axi_rready & M_AXI_RVALID & M_AXI_RRESP[1];  


	//----------------------------------------
	//Example design read check data generator
	//-----------------------------------------

	//Generate expected read data to check against actual read data

	  always @(posedge M_AXI_ACLK)                     
	  begin                                                  
		if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1)// || M_AXI_RLAST)             
			expected_rdata <= 'b1;                            
		else if (M_AXI_RVALID && axi_rready)                  
			expected_rdata <= expected_rdata + 1;             
		else                                                  
			expected_rdata <= expected_rdata;                 
	  end                                                    


	//----------------------------------
	//Example design error register
	//----------------------------------

	//Register and hold any data mismatches, or read/write interface errors 

	  always @(posedge M_AXI_ACLK)                                 
	  begin                                                              
	    if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1)                                          
	      begin                                                          
	        error_reg <= 1'b0;                                           
	      end                                                            
	    else if (read_mismatch || write_resp_error || read_resp_error)   
	      begin                                                          
	        error_reg <= 1'b1;                                           
	      end                                                            
	    else                                                             
	      error_reg <= error_reg;                                        
	  end                                                                


	//--------------------------------
	//Example design throttling
	//--------------------------------

	// For maximum port throughput, this user example code will try to allow
	// each channel to run as independently and as quickly as possible.

	// However, there are times when the flow of data needs to be throtted by
	// the user application. This example application requires that data is
	// not read before it is written and that the write channels do not
	// advance beyond an arbitrary threshold (say to prevent an 
	// overrun of the current read address by the write address).

	// From AXI4 Specification, 13.13.1: "If a master requires ordering between 
	// read and write transactions, it must ensure that a response is received 
	// for the previous transaction before issuing the next transaction."

	// This example accomplishes this user application throttling through:
	// -Reads wait for writes to fully complete
	// -Address writes wait when not read + issued transaction counts pass 
	// a parameterized threshold
	// -Writes wait when a not read + active data burst count pass 
	// a parameterized threshold

	 // write_burst_counter counter keeps track with the number of burst transaction initiated            
	 // against the number of burst transactions the master needs to initiate                                   
	  always @(posedge M_AXI_ACLK)                                                                              
	  begin                                                                                                     
	    if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1 )                                                                                 
	      begin                                                                                                 
	        write_burst_counter <= 'b0;                                                                         
	      end                                                                                                   
	    else if (M_AXI_AWREADY && axi_awvalid)                                                                  
	      begin                                                                                                 
	        if (write_burst_counter[C_NO_BURSTS_REQ] == 1'b0)                                                   
	          begin                                                                                             
	            write_burst_counter <= write_burst_counter + 1'b1;                                              
	            //write_burst_counter[C_NO_BURSTS_REQ] <= 1'b1;                                                 
	          end                                                                                               
	      end                                                                                                   
	    else                                                                                                    
	      write_burst_counter <= write_burst_counter;                                                           
	  end                                                                                                       
	                                                                                                            
	 // read_burst_counter counter keeps track with the number of burst transaction initiated                   
	 // against the number of burst transactions the master needs to initiate                                   
	  always @(posedge M_AXI_ACLK)                                                                              
	  begin                                                                                                     
	    if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1)                                                                                 
	      begin                                                                                                 
	        read_burst_counter <= 'b0;                                                                          
	      end                                                                                                   
	    else if (M_AXI_ARREADY && axi_arvalid)                                                                  
	      begin                                                                                                 
	        if (read_burst_counter[C_NO_BURSTS_REQ] == 1'b0)                                                    
	          begin                                                                                             
	            read_burst_counter <= read_burst_counter + 1'b1;                                                
	            //read_burst_counter[C_NO_BURSTS_REQ] <= 1'b1;                                                  
	          end                                                                                               
	      end                                                                                                   
	    else                                                                                                    
	      read_burst_counter <= read_burst_counter;                                                             
	  end                                                                                                       
	                                                                                                            
	                                                                                                            
	  //implement master command interface state machine                                                        
	                                                                                                            
	  always @ ( posedge M_AXI_ACLK)                                                                            
	  begin                                                                                                     
	    if (M_AXI_ARESETN == 1'b0 )                                                                             
	      begin                                                                                                 
	        // reset condition                                                                                  
	        // All the signals are assigned default values under reset condition                                
	        mst_exec_state      <= IDLE;                                                                
	        start_single_burst_write <= 1'b0;                                                                   
	        start_single_burst_read  <= 1'b0;                                                                   
	        compare_done      <= 1'b0;                                                                          
	        ERROR <= 1'b0;   
	      end                                                                                                   
	    else                                                                                                    
	      begin                                                                                                 
	                                                                                                            
	        // state transition                                                                                 
	        case (mst_exec_state)                                                                               
	                                                                                                            
	          IDLE:                                                                                     
	            // This state is responsible to wait for user defined C_M_START_COUNT                           
	            // number of clock cycles.                                                                      
	            if ( init_txn_pulse == 1'b1)                                                      
	              begin                                                                                         
	                mst_exec_state  <= INIT_WRITE;                                                              
	                ERROR <= 1'b0;
	                compare_done <= 1'b0;
	              end                                                                                           
	            else                                                                                            
	              begin                                                                                         
	                mst_exec_state  <= IDLE;                                                            
	              end                                                                                           
	                                                                                                            
	          INIT_WRITE:                                                                                       
	            // This state is responsible to issue start_single_write pulse to                               
	            // initiate a write transaction. Write transactions will be                                     
	            // issued until burst_write_active signal is asserted.                                          
	            // write controller                                                                             
	            if (writes_done)                                                                                
	              begin                                                                                         
	                mst_exec_state <= INIT_READ;//                                                              
	              end                                                                                           
	            else                                                                                            
	              begin                                                                                         
	                mst_exec_state  <= INIT_WRITE;                                                              
	                                                                                                            
	                if (~axi_awvalid && ~start_single_burst_write && ~burst_write_active)                       
	                  begin                                                                                     
	                    start_single_burst_write <= 1'b1;                                                       
	                  end                                                                                       
	                else                                                                                        
	                  begin                                                                                     
	                    start_single_burst_write <= 1'b0; //Negate to generate a pulse                          
	                  end                                                                                       
	              end                                                                                           
	                                                                                                            
	          INIT_READ:                                                                                        
	            // This state is responsible to issue start_single_read pulse to                                
	            // initiate a read transaction. Read transactions will be                                       
	            // issued until burst_read_active signal is asserted.                                           
	            // read controller                                                                              
	            if (reads_done)                                                                                 
	              begin                                                                                         
	                mst_exec_state <= INIT_COMPARE;                                                             
	              end                                                                                           
	            else                                                                                            
	              begin                                                                                         
	                mst_exec_state  <= INIT_READ;                                                               
	                                                                                                            
	                if (~axi_arvalid && ~burst_read_active && ~start_single_burst_read)                         
	                  begin                                                                                     
	                    start_single_burst_read <= 1'b1;                                                        
	                  end                                                                                       
	               else                                                                                         
	                 begin                                                                                      
	                   start_single_burst_read <= 1'b0; //Negate to generate a pulse                            
	                 end                                                                                        
	              end                                                                                           
	                                                                                                            
	          INIT_COMPARE:                                                                                     
	            // This state is responsible to issue the state of comparison                                   
	            // of written data with the read data. If no error flags are set,                               
	            // compare_done signal will be asseted to indicate success.                                     
	            //if (~error_reg)                                                                               
	            begin                                                                                           
	              ERROR <= error_reg;
	              mst_exec_state <= IDLE;                                                               
	              compare_done <= 1'b1;                                                                         
	            end                                                                                             
	          default :                                                                                         
	            begin                                                                                           
	              mst_exec_state  <= IDLE;                                                              
	            end                                                                                             
	        endcase                                                                                             
	      end                                                                                                   
	  end //MASTER_EXECUTION_PROC                                                                               
	                                                                                                            
	                                                                                                            
	  // burst_write_active signal is asserted when there is a burst write transaction                          
	  // is initiated by the assertion of start_single_burst_write. burst_write_active                          
	  // signal remains asserted until the burst write is accepted by the slave                                 
	  always @(posedge M_AXI_ACLK)                                                                              
	  begin                                                                                                     
	    if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1)                                                                                 
	      burst_write_active <= 1'b0;                                                                           
	                                                                                                            
	    //The burst_write_active is asserted when a write burst transaction is initiated                        
	    else if (start_single_burst_write)                                                                      
	      burst_write_active <= 1'b1;                                                                           
	    else if (M_AXI_BVALID && axi_bready)                                                                    
	      burst_write_active <= 0;                                                                              
	  end                                                                                                       
	                                                                                                            
	 // Check for last write completion.                                                                        
	                                                                                                            
	 // This logic is to qualify the last write count with the final write                                      
	 // response. This demonstrates how to confirm that a write has been                                        
	 // committed.                                                                                              
	                                                                                                            
	  always @(posedge M_AXI_ACLK)                                                                              
	  begin                                                                                                     
	    if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1)                                                                                 
	      writes_done <= 1'b0;                                                                                  
	                                                                                                            
	    //The writes_done should be associated with a bready response                                           
	    //else if (M_AXI_BVALID && axi_bready && (write_burst_counter == {(C_NO_BURSTS_REQ-1){1}}) && axi_wlast)
	    else if (M_AXI_BVALID && (write_burst_counter[C_NO_BURSTS_REQ]) && axi_bready)                          
	      writes_done <= 1'b1;                                                                                  
	    else                                                                                                    
	      writes_done <= writes_done;                                                                           
	    end                                                                                                     
	                                                                                                            
	  // burst_read_active signal is asserted when there is a burst write transaction                           
	  // is initiated by the assertion of start_single_burst_write. start_single_burst_read                     
	  // signal remains asserted until the burst read is accepted by the master                                 
	  always @(posedge M_AXI_ACLK)                                                                              
	  begin                                                                                                     
	    if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1)                                                                                 
	      burst_read_active <= 1'b0;                                                                            
	                                                                                                            
	    //The burst_write_active is asserted when a write burst transaction is initiated                        
	    else if (start_single_burst_read)                                                                       
	      burst_read_active <= 1'b1;                                                                            
	    else if (M_AXI_RVALID && axi_rready && M_AXI_RLAST)                                                     
	      burst_read_active <= 0;                                                                               
	    end                                                                                                     
	                                                                                                            
	                                                                                                            
	 // Check for last read completion.                                                                         
	                                                                                                            
	 // This logic is to qualify the last read count with the final read                                        
	 // response. This demonstrates how to confirm that a read has been                                         
	 // committed.                                                                                              
	                                                                                                            
	  always @(posedge M_AXI_ACLK)                                                                              
	  begin                                                                                                     
	    if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1)                                                                                 
	      reads_done <= 1'b0;                                                                                   
	                                                                                                            
	    //The reads_done should be associated with a rready response                                            
	    //else if (M_AXI_BVALID && axi_bready && (write_burst_counter == {(C_NO_BURSTS_REQ-1){1}}) && axi_wlast)
	    else if (M_AXI_RVALID && axi_rready && (read_index == C_M_AXI_BURST_LEN-1) && (read_burst_counter[C_NO_BURSTS_REQ]))
	      reads_done <= 1'b1;                                                                                   
	    else                                                                                                    
	      reads_done <= reads_done;                                                                             
	    end                                                                                                     

	// Add user logic here

	// User logic ends

	endmodule

10从机代码如下


`timescale 1 ns / 1 ps

	module axi_full_test_v1_0_S00_AXI #
	(
		// Users to add parameters here

		// User parameters ends
		// Do not modify the parameters beyond this line

		// Width of ID for for write address, write data, read address and read data
		parameter integer C_S_AXI_ID_WIDTH	= 1,
		// Width of S_AXI data bus
		parameter integer C_S_AXI_DATA_WIDTH	= 32,
		// Width of S_AXI address bus
		parameter integer C_S_AXI_ADDR_WIDTH	= 6,
		// Width of optional user defined signal in write address channel
		parameter integer C_S_AXI_AWUSER_WIDTH	= 0,
		// Width of optional user defined signal in read address channel
		parameter integer C_S_AXI_ARUSER_WIDTH	= 0,
		// Width of optional user defined signal in write data channel
		parameter integer C_S_AXI_WUSER_WIDTH	= 0,
		// Width of optional user defined signal in read data channel
		parameter integer C_S_AXI_RUSER_WIDTH	= 0,
		// Width of optional user defined signal in write response channel
		parameter integer C_S_AXI_BUSER_WIDTH	= 0
	)
	(
		// Users to add ports here

		// User ports ends
		// Do not modify the ports beyond this line

		// Global Clock Signal
		input wire  S_AXI_ACLK,
		// Global Reset Signal. This Signal is Active LOW
		input wire  S_AXI_ARESETN,
		// Write Address ID
		input wire [C_S_AXI_ID_WIDTH-1 : 0] S_AXI_AWID,
		// Write address
		input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_AWADDR,
		// Burst length. The burst length gives the exact number of transfers in a burst
		input wire [7 : 0] S_AXI_AWLEN,
		// Burst size. This signal indicates the size of each transfer in the burst
		input wire [2 : 0] S_AXI_AWSIZE,
		// Burst type. The burst type and the size information, 
    // determine how the address for each transfer within the burst is calculated.
		input wire [1 : 0] S_AXI_AWBURST,
		// Lock type. Provides additional information about the
    // atomic characteristics of the transfer.
		input wire  S_AXI_AWLOCK,
		// Memory type. This signal indicates how transactions
    // are required to progress through a system.
		input wire [3 : 0] S_AXI_AWCACHE,
		// Protection type. This signal indicates the privilege
    // and security level of the transaction, and whether
    // the transaction is a data access or an instruction access.
		input wire [2 : 0] S_AXI_AWPROT,
		// Quality of Service, QoS identifier sent for each
    // write transaction.
		input wire [3 : 0] S_AXI_AWQOS,
		// Region identifier. Permits a single physical interface
    // on a slave to be used for multiple logical interfaces.
		input wire [3 : 0] S_AXI_AWREGION,
		// Optional User-defined signal in the write address channel.
		input wire [C_S_AXI_AWUSER_WIDTH-1 : 0] S_AXI_AWUSER,
		// Write address valid. This signal indicates that
    // the channel is signaling valid write address and
    // control information.
		input wire  S_AXI_AWVALID,
		// Write address ready. This signal indicates that
    // the slave is ready to accept an address and associated
    // control signals.
		output wire  S_AXI_AWREADY,
		// Write Data
		input wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_WDATA,
		// Write strobes. This signal indicates which byte
    // lanes hold valid data. There is one write strobe
    // bit for each eight bits of the write data bus.
		input wire [(C_S_AXI_DATA_WIDTH/8)-1 : 0] S_AXI_WSTRB,
		// Write last. This signal indicates the last transfer
    // in a write burst.
		input wire  S_AXI_WLAST,
		// Optional User-defined signal in the write data channel.
		input wire [C_S_AXI_WUSER_WIDTH-1 : 0] S_AXI_WUSER,
		// Write valid. This signal indicates that valid write
    // data and strobes are available.
		input wire  S_AXI_WVALID,
		// Write ready. This signal indicates that the slave
    // can accept the write data.
		output wire  S_AXI_WREADY,
		// Response ID tag. This signal is the ID tag of the
    // write response.
		output wire [C_S_AXI_ID_WIDTH-1 : 0] S_AXI_BID,
		// Write response. This signal indicates the status
    // of the write transaction.
		output wire [1 : 0] S_AXI_BRESP,
		// Optional User-defined signal in the write response channel.
		output wire [C_S_AXI_BUSER_WIDTH-1 : 0] S_AXI_BUSER,
		// Write response valid. This signal indicates that the
    // channel is signaling a valid write response.
		output wire  S_AXI_BVALID,
		// Response ready. This signal indicates that the master
    // can accept a write response.
		input wire  S_AXI_BREADY,
		// Read address ID. This signal is the identification
    // tag for the read address group of signals.
		input wire [C_S_AXI_ID_WIDTH-1 : 0] S_AXI_ARID,
		// Read address. This signal indicates the initial
    // address of a read burst transaction.
		input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_ARADDR,
		// Burst length. The burst length gives the exact number of transfers in a burst
		input wire [7 : 0] S_AXI_ARLEN,
		// Burst size. This signal indicates the size of each transfer in the burst
		input wire [2 : 0] S_AXI_ARSIZE,
		// Burst type. The burst type and the size information, 
    // determine how the address for each transfer within the burst is calculated.
		input wire [1 : 0] S_AXI_ARBURST,
		// Lock type. Provides additional information about the
    // atomic characteristics of the transfer.
		input wire  S_AXI_ARLOCK,
		// Memory type. This signal indicates how transactions
    // are required to progress through a system.
		input wire [3 : 0] S_AXI_ARCACHE,
		// Protection type. This signal indicates the privilege
    // and security level of the transaction, and whether
    // the transaction is a data access or an instruction access.
		input wire [2 : 0] S_AXI_ARPROT,
		// Quality of Service, QoS identifier sent for each
    // read transaction.
		input wire [3 : 0] S_AXI_ARQOS,
		// Region identifier. Permits a single physical interface
    // on a slave to be used for multiple logical interfaces.
		input wire [3 : 0] S_AXI_ARREGION,
		// Optional User-defined signal in the read address channel.
		input wire [C_S_AXI_ARUSER_WIDTH-1 : 0] S_AXI_ARUSER,
		// Write address valid. This signal indicates that
    // the channel is signaling valid read address and
    // control information.
		input wire  S_AXI_ARVALID,
		// Read address ready. This signal indicates that
    // the slave is ready to accept an address and associated
    // control signals.
		output wire  S_AXI_ARREADY,
		// Read ID tag. This signal is the identification tag
    // for the read data group of signals generated by the slave.
		output wire [C_S_AXI_ID_WIDTH-1 : 0] S_AXI_RID,
		// Read Data
		output wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_RDATA,
		// Read response. This signal indicates the status of
    // the read transfer.
		output wire [1 : 0] S_AXI_RRESP,
		// Read last. This signal indicates the last transfer
    // in a read burst.
		output wire  S_AXI_RLAST,
		// Optional User-defined signal in the read address channel.
		output wire [C_S_AXI_RUSER_WIDTH-1 : 0] S_AXI_RUSER,
		// Read valid. This signal indicates that the channel
    // is signaling the required read data.
		output wire  S_AXI_RVALID,
		// Read ready. This signal indicates that the master can
    // accept the read data and response information.
		input wire  S_AXI_RREADY
	);

	// AXI4FULL signals
	reg [C_S_AXI_ADDR_WIDTH-1 : 0] 	axi_awaddr;
	reg  	axi_awready;
	reg  	axi_wready;
	reg [1 : 0] 	axi_bresp;
	reg [C_S_AXI_BUSER_WIDTH-1 : 0] 	axi_buser;
	reg  	axi_bvalid;
	reg [C_S_AXI_ADDR_WIDTH-1 : 0] 	axi_araddr;
	reg  	axi_arready;
	reg [C_S_AXI_DATA_WIDTH-1 : 0] 	axi_rdata;
	reg [1 : 0] 	axi_rresp;
	reg  	axi_rlast;
	reg [C_S_AXI_RUSER_WIDTH-1 : 0] 	axi_ruser;
	reg  	axi_rvalid;
	// aw_wrap_en determines wrap boundary and enables wrapping
	wire aw_wrap_en;
	// ar_wrap_en determines wrap boundary and enables wrapping
	wire ar_wrap_en;
	// aw_wrap_size is the size of the write transfer, the
	// write address wraps to a lower address if upper address
	// limit is reached
	wire [31:0]  aw_wrap_size ; 
	// ar_wrap_size is the size of the read transfer, the
	// read address wraps to a lower address if upper address
	// limit is reached
	wire [31:0]  ar_wrap_size ; 
	// The axi_awv_awr_flag flag marks the presence of write address valid
	reg axi_awv_awr_flag;
	//The axi_arv_arr_flag flag marks the presence of read address valid
	reg axi_arv_arr_flag; 
	// The axi_awlen_cntr internal write address counter to keep track of beats in a burst transaction
	reg [7:0] axi_awlen_cntr;
	//The axi_arlen_cntr internal read address counter to keep track of beats in a burst transaction
	reg [7:0] axi_arlen_cntr;
	reg [1:0] axi_arburst;
	reg [1:0] axi_awburst;
	reg [7:0] axi_arlen;
	reg [7:0] axi_awlen;
	//local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH
	//ADDR_LSB is used for addressing 32/64 bit registers/memories
	//ADDR_LSB = 2 for 32 bits (n downto 2) 
	//ADDR_LSB = 3 for 42 bits (n downto 3)

	localparam integer ADDR_LSB = (C_S_AXI_DATA_WIDTH/32)+ 1;
	localparam integer OPT_MEM_ADDR_BITS = 3;
	localparam integer USER_NUM_MEM = 1;
	//----------------------------------------------
	//-- Signals for user logic memory space example
	//------------------------------------------------
	wire [OPT_MEM_ADDR_BITS:0] mem_address;
	wire [USER_NUM_MEM-1:0] mem_select;
	reg [C_S_AXI_DATA_WIDTH-1:0] mem_data_out[0 : USER_NUM_MEM-1];

	genvar i;
	genvar j;
	genvar mem_byte_index;

	// I/O Connections assignments

	assign S_AXI_AWREADY	= axi_awready;
	assign S_AXI_WREADY	= axi_wready;
	assign S_AXI_BRESP	= axi_bresp;
	assign S_AXI_BUSER	= axi_buser;
	assign S_AXI_BVALID	= axi_bvalid;
	assign S_AXI_ARREADY	= axi_arready;
	assign S_AXI_RDATA	= axi_rdata;
	assign S_AXI_RRESP	= axi_rresp;
	assign S_AXI_RLAST	= axi_rlast;
	assign S_AXI_RUSER	= axi_ruser;
	assign S_AXI_RVALID	= axi_rvalid;
	assign S_AXI_BID = S_AXI_AWID;
	assign S_AXI_RID = S_AXI_ARID;
	assign  aw_wrap_size = (C_S_AXI_DATA_WIDTH/8 * (axi_awlen)); 
	assign  ar_wrap_size = (C_S_AXI_DATA_WIDTH/8 * (axi_arlen)); 
	assign  aw_wrap_en = ((axi_awaddr & aw_wrap_size) == aw_wrap_size)? 1'b1: 1'b0;
	assign  ar_wrap_en = ((axi_araddr & ar_wrap_size) == ar_wrap_size)? 1'b1: 1'b0;

	// Implement axi_awready generation

	// axi_awready is asserted for one S_AXI_ACLK clock cycle when both
	// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is
	// de-asserted when reset is low.

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_awready <= 1'b0;
	      axi_awv_awr_flag <= 1'b0;
	    end 
	  else
	    begin    
	      if (~axi_awready && S_AXI_AWVALID && ~axi_awv_awr_flag && ~axi_arv_arr_flag)
	        begin
	          // slave is ready to accept an address and
	          // associated control signals
	          axi_awready <= 1'b1;
	          axi_awv_awr_flag  <= 1'b1; 
	          // used for generation of bresp() and bvalid
	        end
	      else if (S_AXI_WLAST && axi_wready)          
	      // preparing to accept next address after current write burst tx completion
	        begin
	          axi_awv_awr_flag  <= 1'b0;
	        end
	      else        
	        begin
	          axi_awready <= 1'b0;
	        end
	    end 
	end       
	// Implement axi_awaddr latching

	// This process is used to latch the address when both 
	// S_AXI_AWVALID and S_AXI_WVALID are valid. 

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_awaddr <= 0;
	      axi_awlen_cntr <= 0;
	      axi_awburst <= 0;
	      axi_awlen <= 0;
	    end 
	  else
	    begin    
	      if (~axi_awready && S_AXI_AWVALID && ~axi_awv_awr_flag)
	        begin
	          // address latching 
	          axi_awaddr <= S_AXI_AWADDR[C_S_AXI_ADDR_WIDTH - 1:0];  
	           axi_awburst <= S_AXI_AWBURST; 
	           axi_awlen <= S_AXI_AWLEN;     
	          // start address of transfer
	          axi_awlen_cntr <= 0;
	        end   
	      else if((axi_awlen_cntr <= axi_awlen) && axi_wready && S_AXI_WVALID)        
	        begin

	          axi_awlen_cntr <= axi_awlen_cntr + 1;

	          case (axi_awburst)
	            2'b00: // fixed burst
	            // The write address for all the beats in the transaction are fixed
	              begin
	                axi_awaddr <= axi_awaddr;          
	                //for awsize = 4 bytes (010)
	              end   
	            2'b01: //incremental burst
	            // The write address for all the beats in the transaction are increments by awsize
	              begin
	                axi_awaddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB] <= axi_awaddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB] + 1;
	                //awaddr aligned to 4 byte boundary
	                axi_awaddr[ADDR_LSB-1:0]  <= {ADDR_LSB{1'b0}};   
	                //for awsize = 4 bytes (010)
	              end   
	            2'b10: //Wrapping burst
	            // The write address wraps when the address reaches wrap boundary 
	              if (aw_wrap_en)
	                begin
	                  axi_awaddr <= (axi_awaddr - aw_wrap_size); 
	                end
	              else 
	                begin
	                  axi_awaddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB] <= axi_awaddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB] + 1;
	                  axi_awaddr[ADDR_LSB-1:0]  <= {ADDR_LSB{1'b0}}; 
	                end                      
	            default: //reserved (incremental burst for example)
	              begin
	                axi_awaddr <= axi_awaddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB] + 1;
	                //for awsize = 4 bytes (010)
	              end
	          endcase              
	        end
	    end 
	end       
	// Implement axi_wready generation

	// axi_wready is asserted for one S_AXI_ACLK clock cycle when both
	// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is 
	// de-asserted when reset is low. 

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_wready <= 1'b0;
	    end 
	  else
	    begin    
	      if ( ~axi_wready && S_AXI_WVALID && axi_awv_awr_flag)
	        begin
	          // slave can accept the write data
	          axi_wready <= 1'b1;
	        end
	      //else if (~axi_awv_awr_flag)
	      else if (S_AXI_WLAST && axi_wready)
	        begin
	          axi_wready <= 1'b0;
	        end
	    end 
	end       
	// Implement write response logic generation

	// The write response and response valid signals are asserted by the slave 
	// when axi_wready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted.  
	// This marks the acceptance of address and indicates the status of 
	// write transaction.

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_bvalid <= 0;
	      axi_bresp <= 2'b0;
	      axi_buser <= 0;
	    end 
	  else
	    begin    
	      if (axi_awv_awr_flag && axi_wready && S_AXI_WVALID && ~axi_bvalid && S_AXI_WLAST )
	        begin
	          axi_bvalid <= 1'b1;
	          axi_bresp  <= 2'b0; 
	          // 'OKAY' response 
	        end                   
	      else
	        begin
	          if (S_AXI_BREADY && axi_bvalid) 
	          //check if bready is asserted while bvalid is high) 
	          //(there is a possibility that bready is always asserted high)   
	            begin
	              axi_bvalid <= 1'b0; 
	            end  
	        end
	    end
	 end   
	// Implement axi_arready generation

	// axi_arready is asserted for one S_AXI_ACLK clock cycle when
	// S_AXI_ARVALID is asserted. axi_awready is 
	// de-asserted when reset (active low) is asserted. 
	// The read address is also latched when S_AXI_ARVALID is 
	// asserted. axi_araddr is reset to zero on reset assertion.

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_arready <= 1'b0;
	      axi_arv_arr_flag <= 1'b0;
	    end 
	  else
	    begin    
	      if (~axi_arready && S_AXI_ARVALID && ~axi_awv_awr_flag && ~axi_arv_arr_flag)
	        begin
	          axi_arready <= 1'b1;
	          axi_arv_arr_flag <= 1'b1;
	        end
	      else if (axi_rvalid && S_AXI_RREADY && axi_arlen_cntr == axi_arlen)
	      // preparing to accept next address after current read completion
	        begin
	          axi_arv_arr_flag  <= 1'b0;
	        end
	      else        
	        begin
	          axi_arready <= 1'b0;
	        end
	    end 
	end       
	// Implement axi_araddr latching

	//This process is used to latch the address when both 
	//S_AXI_ARVALID and S_AXI_RVALID are valid. 
	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_araddr <= 0;
	      axi_arlen_cntr <= 0;
	      axi_arburst <= 0;
	      axi_arlen <= 0;
	      axi_rlast <= 1'b0;
	      axi_ruser <= 0;
	    end 
	  else
	    begin    
	      if (~axi_arready && S_AXI_ARVALID && ~axi_arv_arr_flag)
	        begin
	          // address latching 
	          axi_araddr <= S_AXI_ARADDR[C_S_AXI_ADDR_WIDTH - 1:0]; 
	          axi_arburst <= S_AXI_ARBURST; 
	          axi_arlen <= S_AXI_ARLEN;     
	          // start address of transfer
	          axi_arlen_cntr <= 0;
	          axi_rlast <= 1'b0;
	        end   
	      else if((axi_arlen_cntr <= axi_arlen) && axi_rvalid && S_AXI_RREADY)        
	        begin
	         
	          axi_arlen_cntr <= axi_arlen_cntr + 1;
	          axi_rlast <= 1'b0;
	        
	          case (axi_arburst)
	            2'b00: // fixed burst
	             // The read address for all the beats in the transaction are fixed
	              begin
	                axi_araddr       <= axi_araddr;        
	                //for arsize = 4 bytes (010)
	              end   
	            2'b01: //incremental burst
	            // The read address for all the beats in the transaction are increments by awsize
	              begin
	                axi_araddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB] <= axi_araddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB] + 1; 
	                //araddr aligned to 4 byte boundary
	                axi_araddr[ADDR_LSB-1:0]  <= {ADDR_LSB{1'b0}};   
	                //for awsize = 4 bytes (010)
	              end   
	            2'b10: //Wrapping burst
	            // The read address wraps when the address reaches wrap boundary 
	              if (ar_wrap_en) 
	                begin
	                  axi_araddr <= (axi_araddr - ar_wrap_size); 
	                end
	              else 
	                begin
	                axi_araddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB] <= axi_araddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB] + 1; 
	                //araddr aligned to 4 byte boundary
	                axi_araddr[ADDR_LSB-1:0]  <= {ADDR_LSB{1'b0}};   
	                end                      
	            default: //reserved (incremental burst for example)
	              begin
	                axi_araddr <= axi_araddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB]+1;
	                //for arsize = 4 bytes (010)
	              end
	          endcase              
	        end
	      else if((axi_arlen_cntr == axi_arlen) && ~axi_rlast && axi_arv_arr_flag )   
	        begin
	          axi_rlast <= 1'b1;
	        end          
	      else if (S_AXI_RREADY)   
	        begin
	          axi_rlast <= 1'b0;
	        end          
	    end 
	end       
	// Implement axi_arvalid generation

	// axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both 
	// S_AXI_ARVALID and axi_arready are asserted. The slave registers 
	// data are available on the axi_rdata bus at this instance. The 
	// assertion of axi_rvalid marks the validity of read data on the 
	// bus and axi_rresp indicates the status of read transaction.axi_rvalid 
	// is deasserted on reset (active low). axi_rresp and axi_rdata are 
	// cleared to zero on reset (active low).  

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_rvalid <= 0;
	      axi_rresp  <= 0;
	    end 
	  else
	    begin    
	      if (axi_arv_arr_flag && ~axi_rvalid)
	        begin
	          axi_rvalid <= 1'b1;
	          axi_rresp  <= 2'b0; 
	          // 'OKAY' response
	        end   
	      else if (axi_rvalid && S_AXI_RREADY)
	        begin
	          axi_rvalid <= 1'b0;
	        end            
	    end
	end    
	// ------------------------------------------
	// -- Example code to access user logic memory region
	// ------------------------------------------

	generate
	  if (USER_NUM_MEM >= 1)
	    begin
	      assign mem_select  = 1;
	      assign mem_address = (axi_arv_arr_flag? axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB]:(axi_awv_awr_flag? axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB]:0));
	    end
	endgenerate
	     
	// implement Block RAM(s)
	generate 
	  for(i=0; i<= USER_NUM_MEM-1; i=i+1)
	    begin:BRAM_GEN
	      wire mem_rden;
	      wire mem_wren;
	
	      assign mem_wren = axi_wready && S_AXI_WVALID ;
	
	      assign mem_rden = axi_arv_arr_flag ; //& ~axi_rvalid
	     
	      for(mem_byte_index=0; mem_byte_index<= (C_S_AXI_DATA_WIDTH/8-1); mem_byte_index=mem_byte_index+1)
	      begin:BYTE_BRAM_GEN
	        wire [8-1:0] data_in ;
	        wire [8-1:0] data_out;
	        reg  [8-1:0] byte_ram [0 : 15];
	        integer  j;
	     
	        //assigning 8 bit data
	        assign data_in  = S_AXI_WDATA[(mem_byte_index*8+7) -: 8];
	        assign data_out = byte_ram[mem_address];
	     
	        always @( posedge S_AXI_ACLK )
	        begin
	          if (mem_wren && S_AXI_WSTRB[mem_byte_index])
	            begin
	              byte_ram[mem_address] <= data_in;
	            end   
	        end    
	      
	        always @( posedge S_AXI_ACLK )
	        begin
	          if (mem_rden)
	            begin
	              mem_data_out[i][(mem_byte_index*8+7) -: 8] <= data_out;
	            end   
	        end    
	               
	    end
	  end       
	endgenerate
	//Output register or memory read data

	always @( mem_data_out, axi_rvalid)
	begin
	  if (axi_rvalid) 
	    begin
	      // Read address mux
	      axi_rdata <= mem_data_out[0];
	    end   
	  else
	    begin
	      axi_rdata <= 32'h00000000;
	    end       
	end    

	// Add user logic here

	// User logic ends

	endmodule

11打包ip

 11 新建工程

 12 创建 block_design 对刚才的仿真

 13 添加刚建立好的ip

 13添加刚刚的ip 点击ok

14 在design中添加模块

 

在界面中就会出现模块

 15 引出外部引脚 mark_exteral

 15相互连接

16 检查模块

 16 地址分配

 

16再次检查

 

 17 将模块输出 generate output products

 

 18 打包

 打包后结果

19 添加激励文件

module axi_full_wrapper_tb;


reg m00_axi_aclk_0;
reg m00_axi_aresetn_0;
reg m00_axi_init_axi_txn_0;

initial begin
    m00_axi_aclk_0 = 1'b1;
    m00_axi_aresetn_0 = 1'b0;
    m00_axi_init_axi_txn_0 = 1'b0;
#100
    m00_axi_aresetn_0 = 1'b1;
    #1000
    m00_axi_init_axi_txn_0 = 1'b1;
end

always #10  m00_axi_aclk_0 = ! m00_axi_aclk_0 ;

axi_full_wrapper  axi_full_wrapper_inst (
  .m00_axi_aclk_0(m00_axi_aclk_0),
  .m00_axi_aresetn_0(m00_axi_aresetn_0),
  .m00_axi_init_axi_txn_0(m00_axi_init_axi_txn_0)
);

endmodule

20 查看仿真

 

 


网站公告

今日签到

点亮在社区的每一天
去签到