AI Agent设计模式四:Evaluator

发布于:2025-04-06 ⋅ 阅读:(8) ⋅ 点赞:(0)

概念 :质量验证与反馈机制

  • ✅ 优点:自动化质量检查,实现持续优化闭环
  • ❌ 缺点:评估准确性依赖模型能力

在这里插入图片描述

from typing import TypedDict
from langchain_openai import ChatOpenAI
from langgraph.graph import StateGraph, START, END
from typing_extensions import Literal
import os

from pydantic import BaseModel,Field

# 初始化模型
llm = ChatOpenAI(
    model="gpt-3.5-turbo",
    openai_api_key=os.environ["GPT_API_KEY"],
    openai_api_base="https://api.chatanywhere.tech/v1",
    streaming=False  # 禁用流式传输
)

class Feedback(BaseModel):
    grade: Literal["合格", "不合格"] = Field(
        description="判断文章的逻辑性是否合格"
    )
    feedback: str = Field(
        description="对文章的逻辑性进行评价,给出修改建议"
    )

class State(TypedDict):
    topic: str  # 主题
    paper: str  # 文章内容
    feedback: str # 反馈内容
    good_or_not: str # 逻辑性是否合格
    count: int # 文章生成次数

def llm_call_generator(state: State):
    print("开始生成文章")
    if state.get("feedback"):
        prompt = f"""根据提供的主题写一篇文章。确保文章逻辑严谨,有说服力。
        主题为:{state['topic']}
        你同事需要考虑如下修改建议:{state['feedback']}
        """
        msg = llm.invoke(prompt)
    else:
        prompt = f"""根据提供的主题写一篇文章。确保文章逻辑严谨,有说服力。
        主题为:{state['topic']}
        """
        msg = llm.invoke(prompt)
    count = state.get("count", 0) + 1
    return {
        "paper": msg.content,
        "count": count
    }

def llm_call_evaluator(state: State):
    print("开始评估文章")
    evaluate = llm.with_structured_output(Feedback, method="function_calling")

    prompt = f"""
    请对文章进行逻辑性判断,给出评价。
    文章为:{state['paper']}
    """
    msg = evaluate.invoke(prompt)

    print(f"评估结果:{msg.grade}")

    return {
        "feedback": msg.feedback,
        "good_or_not": msg.grade
    }

def route_paper(state: State):
    if state["good_or_not"] == "合格":
        return "Accept"
    elif state["count"] >= 2:
        return "Accept"
    elif state["good_or_not"] == "不合格":
        return "Reject and Feedback"

workflow = StateGraph(State)
workflow.add_node("llm_call_generator", llm_call_generator)
workflow.add_node("llm_call_evaluator", llm_call_evaluator)

workflow.add_edge(START, "llm_call_generator")
workflow.add_edge("llm_call_generator", "llm_call_evaluator")
workflow.add_conditional_edges(
    "llm_call_evaluator",
    route_paper,
    {
        "Accept": END,
        "Reject and Feedback": "llm_call_generator"
    }
)

graph = workflow.compile()
result = graph.invoke({"topic": "技术的重要性"})
print(f"最终结果:{result}")

执行结果:
在这里插入图片描述
常见问题

遇到的问题如下:

结构化输出这里太难用了 每次都报结构化输出失败。。。
router = llm.with_structured_output(Route)

openai.BadRequestError: Error code: 400 - {‘error’: {‘code’: ‘invalid_parameter_error’, ‘param’: None, ‘message’: ‘<400> InternalError.Algo.InvalidParameter: The tool call is not supported.’, ‘type’: ‘invalid_request_error’}, ‘id’: ‘chatcmpl-a711b580-58af-9286-bad1-ddc36b8a44d2’, ‘request_id’: ‘a711b580-58af-9286-bad1-ddc36b8a44d2’}
During task with name ‘llm_call_router’ and id ‘3437df04-e2bc-aac5-f29b-c3417070c369’

原因:
with_structured_output方法对很多大模型没有适配,原本用的deepseek一直报错,换成chatgpt之后就没问题了


网站公告

今日签到

点亮在社区的每一天
去签到