图论:多源最短路

发布于:2025-04-08 ⋅ 阅读:(37) ⋅ 点赞:(0)

 多源最短路 

B3647 【模板】Floyd - 洛谷

#include<iostream>
#include<cstring>
using namespace std;

const int N = 110;
int f[N][N];
int n, m;

int main()
{
	memset(f, 0x3f, sizeof(f));//对于重边的处理取较小值,所以要把全部都初始化成无穷大,以避免对数据的影响
	cin >> n >> m;
	for (int i = 1; i <= n; i++)//自己到自己都是0
		f[i][i] = 0;
	
	for (int i = 1; i <= m; i++)
	{
		int u, v, w; cin >> u >> v >> w;
		f[u][v] = f[v][u] = min(w, f[u][v]);//对重边+无向图的处理
	}

	for (int k = 1; k <= n; k++)//逐步加入k个点
	{
		for (int i = 1; i <= n; i++)//起点
		{
			for (int j = 1; j <= n; j++)//终点
				f[i][j] = min(f[i][j], f[i][k] + f[k][j]);//k是中转点
		}
	}
	for (int i = 1; i <= n; i++)
	{
		for (int j = 1; j <= n; j++)
		{
			cout << f[i][j] << " ";
		}
		cout << endl;
	}
	return 0;
}

1. 状态表⽰: f[k][i][j] 表⽰:仅仅经过[1, k] 这些点,结点i ⾛到结点j 的最短路径 的⻓度。

2. 状态转移⽅程:

• 第⼀种情况,不选新来的点: f[k][i][j] = f[k - 1][i][j] ;

• 第⼆种情况,选择新来的点: f[k][i][j] = f[k - 1][i][k] + f[k - 1][k][j],

i->k的路径+k到j的路径之和,把k作为中转点。找以k为中转点,i到j是否存在更小的路径,存在的话,那就更新,不在的话,那就维持原判。

3. 空间优化:只会⽤到上⼀层的状态,因此可以优化到第⼀维。

4. 初始化:

• f[i][i] = 0 ;

• f[i][j] 为初始状态下i 到j 的距离,如果没有边则为⽆穷。

5. 填表顺序:

• ⼀定要先枚举k ,再枚举i 和j 。因为我们填表的时候,需要依赖的是k - 1 层的状态,因 此k 必须先枚举。

P2910 [USACO08OPEN] Clear And Present Danger S - 洛谷

#include<iostream>

using namespace std;
const int N = 110;
const int M = 1e4 + 10;
int n, m;
int a[M];
int f[N][N];
int main()
{
	cin >> n >> m;
	for (int i = 1; i <= m; i++)cin >> a[i];

	for (int i = 1; i <= n; i++)
		for (int j = 1; j <= n; j++)
			cin >> f[i][j];

	//floyd算法
	for (int k = 1; k <= n; k++)
	{
		for (int i = 1; i <= n; i++)
		{
			for (int j = 1; j <= n; j++)
				f[i][j] = min(f[i][j], f[i][k] + f[k][j]);
		}
	}
	//加上
	long long ret = 0;
	for (int i = 1; i < m; i++)
	{
		ret += f[a[i]][a[i+1]];
	}
	cout << ret << endl;
}

 P1119 灾后重建 - 洛谷

 本题的t是保证不下降的->可以使用floyd算法不断加点。

#include<iostream>
#include<cstring>
using namespace std;
const int N = 210;
const int M = 2e4 + 10;
const int INF = 0x3f3f3f3f;

int f[N][N];
int t[N];
int n, m;

void floyd(int k)
{
	for (int i = 0; i < n; i++)
	{
		for (int j = 0; j < n; j++)
		{
			f[i][j] = min(f[i][j], f[i][k] + f[k][j]);
		}
	}
}

int main()
{
	cin >> n >> m;
	memset(f, INF, sizeof(f));
	for (int i = 0; i < n; i++)f[i][i] = 0;

	for (int i = 0; i < n; i++)cin >> t[i];

	for (int i = 0; i < m; i++)
	{
		int a, b, c;
		cin >> a >> b >> c;
		f[a][b] = f[b][a] = min(f[a][b], c);//无向边的处理,!!!!!!
	}
	int q; cin >> q;
	int pos = 0;
	while (q--)
	{
		int a, b, c; cin >> a >> b >> c;
		while (pos<n&&t[pos] <= c)//pos记录当前符合时间条件可以加进去的地点,不可以超过n
			floyd(pos++);
		}
		if (t[a] > c || t[b] > c || f[a][b] == INF)cout << -1 << endl;
		else cout << f[a][b] << endl;
	}
	return 0;
}

 P6175 无向图的最小环问题 - 洛谷

 从上面找最小环

下面用floyd算法找最小距离

#include<iostream>

using namespace std;
const int N = 110;
const int M = 5e3 + 10;
const int INF = 1e8;
int n, m;

int e[N][N];
int f[N][N];

int main()
{
	cin >> n >> m;
	for (int i = 1; i <= n; i++)
	{
		for (int j = 1; j <= n; j++)
		{
			e[i][j] = e[j][i] = f[i][j] = f[j][i] = INF;
		}
	}
	for (int i = 1; i <= m; i++)
	{
			int a, b, c; cin >> a >> b >> c;
			e[a][b] = e[b][a] = f[a][b] = f[b][a] = min(f[a][b], c);
	}
	int ret = INF;
	for (int k = 1; k <= n; k++)
	{
        //最小环
		for (int i = 1; i < k; i++)
		{
			for (int j = i + 1; j < k; j++)
			{
				ret = min(ret, f[i][j] + e[i][k] + e[k][j]);
			}
		}
        //最小距离
		for (int i = 1; i <= n; i++)
		{
			for (int j = 1; j <= n; j++)
				f[i][j] = min(f[i][j], f[i][k] + f[k][j]);
		}
	}
	if (ret == INF)cout << "No solution." << endl;
	else cout << ret << endl;
	return 0;
}