官网:torch — PyTorch 2.6 documentation
Pycharm
解释器
一般搞深度学习都用虚拟环境的解释器,为了满足不同的项目所需要的不同的包的版本。
1. system interpreter表示本地的解释器
也就是你电脑系统里安装的解释器
2. Virtual Environment—Python的虚拟环境
anaconda可以帮我们创建虚拟环境
a. 创建虚拟环境
conda create -n name python = 3.8
b. 查看系统中已经存在的环境, * 在哪就是当前在哪个环境。
conda info --envs
c. 激活环境
conda activate xxx
d. 退出环境
conda deactivate
3. conda Enviroment
Anaconda里面附带安装的Python解释器
PyTorch下载命令
- 输入 ↓ ,查看cuda版本
nvcc -V
- 建议挑选conda的而不是wheel的命令,conda支持虚拟环境而且能自动解决依赖问题。
常见问题
- 高版本的解释器在anaconda3虚拟路径文件夹envs下边。
- 不显示In[2],打开终端,↓
pip install ipython
- jupyter默认只安装在base环境当中,如果base环境没有安装pytorch,那么jupyter是没有办法使用pytorch的。
方案1:在base环境里安装pytorch
方案2:在pytorch环境里安装jupyter
- 装库时报错Caused by SSLError(SSLZeroReturnError(6, 'TLS/SSL connection has been closed (EOF)
把代理关了。
- 导入PIL时报错找不到模块
module = self._system_import(name, *args, **kwargs)
ImportError: DLL load failed while importing _imaging: 找不到指定的模块。
解决方法:卸载了pywin32包
- 报错
LooseVersion = distutils.version.LooseVersion AttributeError: module 'distutils' has no attribute 'version'
解决方法:注释掉控制台init方法的4-7和第10行。
- 页面太小问题
修改固态盘的页面大小,最小值是内存的1.5倍,最大值是内存的3倍。
- 调用tensorboard不显示图像
降低tensorboard版本
pip install tensorboard==2.12.0
- 在调用pillow的add_image方法时报错
image = image.resize((scaled_width, scaled_height), Image.ANTIALIAS)
AttributeError: module 'PIL.Image' has no attribute 'ANTIALIAS'
新版本pillow(10.0.0之后)Image.ANTIALIAS
被移除了,取而代之的是Image.LANCZOS
or Image.Resampling.LANCZOS
,相关描述可以可以在pillow的releasenotes中查到。点进去报错的文件,ANTIALIAS改成LANCZOS就可以了。
在 Jupyter Notebook 中切换/使用 conda 虚拟环境
服务器上配置有多个 conda 虚拟环境,在使用jupyter notebook时需要使用其中的一个环境,但是其默认还是使用 base 环境。Jupyter 在一个名为 kernel 的单独进程中运行用户的代码。kernel 可以是不同的 Python 安装在不同的 conda 环境或虚拟环境。
方法1:使用 nb_conda_kernels 添加所有环境(推荐)
conda activate my-conda-env # this is the environment for your project and code
conda install ipykernel
conda deactivate
conda activate base # could be also some other environment
conda install nb_conda_kernels
jupyter notebook
注意:这里的 conda install nb_conda_kernels
是在 base 环境下操作的。
安装好后,打开 jupyter notebook 就会显示所有的 conda 环境啦,点击随意切换。
方法2:为 conda 环境创建特殊内核
conda create -n my-conda-env # creates new virtual env
conda activate my-conda-env # activate environment in terminal
conda install ipykernel # install Python kernel in new conda env
ipython kernel install --user --name=my-conda-env-kernel # configure Jupyter to use Python kernel
jupyter notebook # run jupyter from system
只有 Python 内核会在 conda 环境中运行,系统中的 Jupyter 或不同的 conda 环境将被使用——它没有安装在 conda 环境中。通过调用ipython kernel install将 jupyter 配置为使用 conda 环境作为内核.
windows/mac/linux jupyter notebook 切换默认环境
方法3:在 conda 环境中运行 Jupyter 服务器和内核
conda create -n my-conda-env # creates new virtual env
conda activate my-conda-env # activate environment in terminal
conda install jupyter # install jupyter + notebook
jupyter notebook # start server + kernel
这种方法就是为每一个 conda 环境 都安装 jupyter。
Jupyter 将完全安装在 conda 环境中。不同版本的 Jupyter 可用于不同的 conda 环境,但此选项可能有点矫枉过正。
在环境中包含内核就足够了,内核是运行代码的封装 Python 的组件。Jupyter notebook 的其余部分可以被视为编辑器或查看器,并且没有必要为每个环境单独安装它并将其包含在每个 env.yml 文件中。
常用函数
- 查看当前路径的包
dir(torch)
- 查看方法的帮助文档
help(torch.cuda.is_available()) / 还有一种方式获取官方文档信息:xxxx ??
跳到句首
shift+enter
数据加载
DataSet抽象类
提供一种方式去获取数据及其label。
DataLoader类
torch.utils.data.DataLoader是一个迭代器,方便我们去多线程地读取数据,并且可以实现batchsize以及
shuffle 的读取等。为后边的网络提供不同的数据形式。
- 如何获取每一个数据及其label
- 告诉我们总共有多少数据
神经网络经常需要对一个数据迭代多次,只有知道当前有多少个数据,进行训练时才知道要训练多少次,才能把整个数据集迭代完。
from torch.utils.data import Dataset
import os
#读取图片
from PIL import Image
class MyDataset(Dataset):
#加载磁盘图片到内存
#路径分成两部分是因为后续还要用蜜蜂的,拼接方便
def __init__(self,root_dir,label_dir):
self.root_dir = root_dir
self.label_dir = label_dir
self.path = os.path.join(self.root_dir,self.label_dir)
#而得到每一张图片的地址
self.img_path = os.listdir(self.path)
def __getitem__(self, idx):
img_name = self.img_path[idx]
img_item_path = os.path.join(self.root_dir,self.label_dir,img_name)
#读取图片
img = Image.open(img_item_path)
label = self.label_dir
return img,label
def __len__(self):
return len(self.img_path)
root_dir = "dataset/train"
label_dir = "ants"
ants_dataset = MyDataset(root_dir,label_dir)
bees_dataset = MyDataset(root_dir,label_dir)
ants_dataset[0]
TensorBoard(PyTorch1.1之后)
demo
from torch.utils.tensorboard import SummaryWriter
#日志的所在地址
writer = SummaryWriter("D:\PythonProject\Introduction\logs")
#第一个参数相当于表头,绘图
for i in range(100):
writer.add_scalar('y=x',3 * i, i)
writer.close()
查看logs
在控制台输入
tensorboard --logdir=logs
指定端口,防止当别人也在访问时跟别人冲突
tensorboard --logdir=logs --port=6007
注意:如果出现拟合,那么可以删掉logs下边的文件,重新运行。
添加图像
通过打印发现,此类型不适合当作tensorboard的添加图片的输入类型。
PyDev console: using IPython 8.12.2
Python 3.8.20 (default, Oct 3 2024, 15:19:54) [MSC v.1929 64 bit (AMD64)] on win32
img_path = "dataset/train/ants/0013035.jpg"
from PIL import Image
img = Image.open(img_path)
print(type(img))
<class 'PIL.JpegImagePlugin.JpegImageFile'>
so,利用Opencv读取图片,获得numpy类型图片数据
利用numpy.array(),对PIL图片进行转换。
Transforms单张图片
输入图像到transforms.py,它像一个工具箱,把一些数据类型转化为tensor(神经网络 的专用数据类型,包装了很多神经网络需要的参数),或者resize.
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
from PIL import Image
#通过transform.Totensor解决俩问题
#1. transform应该如何使用
#2. 为什么需要一个Tensor的数据类型
img_path = "dataset/train/ants/0013035.jpg"
img = Image.open(img_path)
writer = SummaryWriter('logs')
tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)
# print(tensor_img)
# print(img)
writer.add_image("Tensor_img", tensor_img, 3)
writer.close()
图片不显示的把logs下其他的文件删掉,关掉终端打开再重新运行。
归一化----加速收敛
正则化是防止过拟合
让不同的特征在数值上保持一致,避免某些特征对模型的影响过大,从而更好地学习到数据当中的模式和关系。归一化之后,均值为0,标准差为1.
__call__介绍,把对象当函数用。
class Person:
def __call__(self, name):
print("__call__"+"Hello"+name)
def hello(self,name):
print("hello"+name)
#__xxx__这种都是内置函数,可以对其进行重写
person = Person()
#__call__可以直接使用对象里加参数,而不用.的方式。
person("zhangsan")
person.hello("lisi")
忽略大小写匹配:
settings ----> 搜索case------>Generral下的Code Completion------->取勾Match case
Compose()的用法
Compose()中的参数需要是一个列表,Python中,列表的形式为[xx,xx,xx,xx,...]
在Compose()中,数据需要是transforms类型,所以,Compose(transsforms参数1,transsforms参数2,...)
用于将多个数据预处理操作组合成一个整体的变换,具体而言,按列表顺序进行转换。大小,裁剪,翻转,归一化等。
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
from PIL import Image
#通过transform.Totensor解决俩问题
#1. transform应该如何使用
#2. 为什么需要一个Tensor的数据类型
img_path = "dataset/train/ants/0013035.jpg"
img = Image.open(img_path)
writer = SummaryWriter('logs')
tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)
# print(tensor_img)
# print(img)
#writer.add_image("Tensor_img", tensor_img, 3)
print(tensor_img[0][0][0])
#Normalize,归一化,提供三个均值,三个标准差
tensor_norm = transforms.Normalize([0.5,0.5,0.5], [0.5,0.5,0.5])
#把图片归一化
img_norm = tensor_norm(tensor_img)
print(img_norm[0][0][0])
writer.add_image("Normalize", img_norm,2)
#Resize
print(img.size)
tran_resize = transforms.Resize((512,512))
#img PIL -> resize -> img_resize PIL
#这个方法需要传入PIL类型的img
img_resize = tran_resize(img)
# img_resize PIL -> toTensor ->img_resize tensor
img_resize = tensor_trans(img_resize)
writer.add_image("Resize", img_resize,0)
print(img_resize)
#Compose
trans_resize_2 = transforms.Resize(512)
trans_compose = transforms.Compose([trans_resize_2 , tensor_trans])
trans_resize_2 = trans_compose(img)
writer.add_image("Resize2", trans_resize_2,1)
#RandomCrop,随机裁剪
trans_random = transforms.RandomCrop((512,512))
trans_compose_2 = transforms.Compose([trans_random , tensor_trans])
#循环的目的是为了展示随机效果
for i in range(10):
img_crop = trans_compose_2(img)
writer.add_image("RandomCrop", img_crop,i)
writer.close()
torchvision中的数据集的使用
单纯加载数据集CIFAR10 torchvision.datasets — Torchvision master documentation
import torchvision
train_set = torchvision.datasets.CIFAR10(root='./data', train=True, download=True)
test_set = torchvision.datasets.CIFAR10(root='./data', train=False, download=True)
#打印的是target,就是标签
print(test_set[0])
print(test_set.classes)
img , target = test_set[0]
print(img)
print(target)
print(test_set.classes[target])
#对于PIL数据集直接调用这个方法就可以展示图片了
img.show()
对数据集变换
import torchvision
from torch.utils.tensorboard import SummaryWriter
dataset_transform = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
#因为图片太小了就只进行这一个变换
])
train_set = torchvision.datasets.CIFAR10(root='./data', train=True,transform=dataset_transform, download=True)
test_set = torchvision.datasets.CIFAR10(root='./data', train=False,transform=dataset_transform, download=True)
print(test_set[0])
#输出的是tensor数据类型,那么就可以用tensorboard进行一个显示
writer = SummaryWriter(log_dir='p10')
for i in range(10):
img, target = test_set[i]
#ctrl+p
#此时img是tensor类型的
writer.add_image("test_set", img, i)
writer.close()
在终端输入命令
tensorboard --logdir="p10"
如果下载太慢的话,可以打开数据集函数进去复制连接自己下载,然后放在对应的文件夹下。
DataLoader的使用
加载器,可以批量加载
参数:
num_workers : 使用多少进程去加载,但是可能只能linux用,win可能报错BrokenPipeErrror,默认值为0,代表使用主进程进行加载。
drop_last : 最后的余数图片要不要加载,false就是不舍弃的意思
shuffle : 遍历完一遍以后才会打乱,而且是在每轮训练当中打乱,一个epoch打乱一次
target不是标签,是标签存放的位置,标签列表是classes,真正的标签是classes[target]
batchsize打印:
import torch
import torchvision
from torch.utils.data import DataLoader
#准备的测试数据集
test_data = torchvision.datasets.CIFAR10(root='./data', train=False, download=False,transform=torchvision.transforms.ToTensor())
test_loader = DataLoader(test_data, batch_size=4, shuffle=True,num_workers=0,drop_last=False)
#测试数据集中第一张图片
img ,target = test_data[0]
print(img.shape)
print(target)
#data是test_loader里的每一个对象,test_loader是可迭代对象
for data in test_loader:
imgs , targets = data
print(imgs.shape)
print(targets)
#输出的tensor是把每个图片的target融合在一起了。
验证shuffle
#验证shuffle
for epoch in range(2):
step = 0
for data in test_loader:
imgs, targets = data
writer.add_images("Epoch:{}".format(epoch), imgs, step)
step += 1
总代码:
import torch
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
#准备的测试数据集
test_data = torchvision.datasets.CIFAR10(root='./data', train=False, download=False,transform=torchvision.transforms.ToTensor())
test_loader = DataLoader(test_data, batch_size=4, shuffle=True,num_workers=0,drop_last=False)
#测试数据集中第一张图片
img ,target = test_data[0]
print(img.shape)
print(target)
#data是test_loader里的每一个对象,test_loader是可迭代对象
# print(imgs.shape)
# print(targets)
#输出的tensor是把每个图片的target融合在一起了。
writer = SummaryWriter(log_dir='./dataloader')
step = 0
for data in test_loader:
imgs , targets = data
writer.add_images("test_data", imgs, step)
step += 1
#验证shuffle
for epoch in range(2):
step = 0
for data in test_loader:
imgs, targets = data
writer.add_images("Epoch:{}".format(epoch), imgs, step)
step += 1
writer.close()
mini-batch
随机梯度下降
nn.Module
关于神经网络的工具,一般在torch.nn里边。神经网络的基本骨架,一般是被继承的父类
conv2常用参数
padding ----- 填充,更好的利用边缘信息,这样可以平均利用数据,默认是不进行填充的。
bias ------ 偏置参数
padding_mode ------- 填充模式,一般默认是0
dilation -------- 空洞卷积
卷积demo,因为nn.Module函数当中内置了call函数,所以把参数放进对象里,会自动调用forward函数。是在call函数里调用的。
import torch
from torch import nn
class MyNet(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input):
output = input + 1
return output
my_net = MyNet()
x =torch.tensor(1.0)
y = my_net(x)
print(y)
为什么要调整形状,因为我们一开始打印出来发现只有高和宽,不满足conv2d的api要求输入的形状。
import torch
input = torch.tensor([[1,2,0,3,1],
[0,1,2,3,1],
[1,2,1,0,0],
[5,2,3,1,1],
[2,1,0,1,1]])
kernel = torch.tensor([[1,2,1],
[0,1,0],
[2,1,0]])
#这个尺寸只有高和宽
print(input.shape)
#torch.Size([5, 5])
print(kernel.shape)
#torch.Size([3, 3])
pytorch给我们提供了尺寸变换
input = torch.reshape(input,(1,1,5,5))
kernel = torch.reshape(kernel,(1,1,3,3))
变换以后就可以利用卷积进行输入
output = F.conv2d(input,kernel,stride=1)
output2 = F.conv2d(input,kernel,stride=2)
print(output)
print(output2)
import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10(root='./data', train=False,
transform=torchvision.transforms.ToTensor(),
download=False)
dataloader = DataLoader(dataset, batch_size=64)
class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 3)
def forward(self, x):
x = self.conv1(x)
return x
my_net = MyNet()
writer = SummaryWriter("./logs")
#可以打印网络结构
#print(my_net)
step = 0
for data in dataloader:
imgs, targets = data
output = my_net(imgs)
print(output.shape)
print(imgs.shape)
#torch.Size([64, 3, 32, 32])
writer.add_images("input", imgs, step)
#torch.Size([64, 6, 30, 30])
#-1是占位符,会被自动计算那个地方的值是多少
output = torch.reshape(output, (-1,3,30,30))
writer.add_images("output", output, step)
step += 1
参数:dilation:空洞卷积,卷积核是隔一个的。
import torch
import torch.nn.functional as F
input = torch.tensor([
[1,2,0,3,1],
[0,1,2,3,1],
[1,2,1,0,0],
[5,2,3,1,1],
[2,1,0,1,1]
])
kernel = torch.tensor([[1,2,1],
[0,1,0],
[2,1,0]])
print(input.shape)
print(kernel.shape)
#ctrl+p,提示参数
#(卷积核数量,通道数,,)
#一个卷积核生成一个通道
input = torch.reshape(input,(1,1,5,5))
kernel = torch.reshape(kernel,(1,1,3,3))
print(input.shape)
print(kernel.shape)
output = F.conv2d(input,kernel,stride=1)
output2 = F.conv2d(input,kernel,stride=2)
output3 = F.conv2d(input,kernel,stride=1,padding=1)
print(output)
print(output2)
print(output3)
池化层
https://github.com/vdumoulin/conv_arithmetic
空洞卷积示意图↑
ceil_mode ------- 当卷积核卷出去以后,true,保留,false,不保留
卷积:提取特征
池化:降维
demo
import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False,
transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=4)
input = torch.tensor([
[1,2,0,3,1],
[0,1,2,3,1],
[1,2,1,0,0],
[5,2,3,1,1],
[2,1,0,1,1]
], dtype=torch.float32)
input = torch.reshape(input,(-1,1,5,5))
print(input.shape)
class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
self.maxpool1 = nn.MaxPool2d(kernel_size=3, ceil_mode=True)
def forward(self, x):
output = self.maxpool1(x)
return output
mynet = MyNet()
#print(mynet(input))
writer = SummaryWriter('./logs_maxpool')
steps = 0
for data in dataloader:
imgs,targets = data
writer.add_images("input", imgs, steps)
output = mynet(imgs)
writer.add_images("output", output, steps)
steps += 1
writer.close()
非线性激活
import torch
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
input = torch.tensor([[1,-0.5],
[-1,3]])
output = torch.reshape(input,(-1,1,2,2))
print(output)
dataset = (torchvision.datasets.CIFAR10(root='./data', train=False, download=False,
transform=torchvision.transforms.ToTensor()))
dataloader = DataLoader(dataset, batch_size=64)
class MyNet(torch.nn.Module):
def __init__(self):
super(MyNet, self).__init__()
self.relu1 = torch.nn.ReLU()
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
output = self.sigmoid(x)
return output
mynet = MyNet()
writer = SummaryWriter('./logs_relu')
step = 0
for data in dataloader:
imgs,targets = data
writer.add_images("input",imgs,step)
output = mynet(imgs)
writer.add_images("output",imgs,step)
step += 1
writer.close()
output = mynet(input)
print(output)
Sequential
让代码看起来更简洁。
demo:对cifar10进行简单分类的神经网络,好像是经过一次最大池化,尺寸就减半。
已知输入尺寸和输出尺寸,联立两个公式,可以反解出padding。dilation采用默认的1,就是不进行膨胀。
倒数第二个和倒数第三个,倒数第一个和倒数第二个之间还分别各自有一个线性层。
import torch
from torch import nn
from torch.nn import MaxPool2d, Flatten, Conv2d, Linear
from torch.utils.tensorboard import SummaryWriter
class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
# self.conv1 = nn.Conv2d(3, 32, kernel_size=5,
# padding=2)
# self.maxpool1 = nn.MaxPool2d(2)
# self.conv2 = nn.Conv2d(32, 32,5, padding=2)
# self.maxpool2 = nn.MaxPool2d(2)
# self.conv3 = nn.Conv2d(32, 64,5, padding=2)
# self.maxpool3 = MaxPool2d(2)
# self.flatten = Flatten()
# #从图片里看出来的,64*4*4
# self.linear1 = nn.Linear(1024,64)
# self.linear2 = nn.Linear(64,10)
self.model1 = nn.Sequential(
Conv2d(3, 32, kernel_size=5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, kernel_size=5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, kernel_size=5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64,10)
)
def forward(self, x):
x = self.model1(x)
# x = self.conv1(x)
# x = self.maxpool1(x)
# x = self.conv2(x)
# x = self.maxpool2(x)
# x = self.conv3(x)
# x = self.maxpool3(x)
# x = self.flatten(x)
# x = self.linear1(x)
# x = self.linear2(x)
return x
my_net = MyNet()
print(my_net)
input = torch.ones((64, 3, 32, 32))
output = my_net(input)
print(output.shape)
writer = SummaryWriter("./logs_seq")
writer.add_graph(my_net, input)
writer.close()
损失函数
L1Loss
import torch
from torch.nn import L1Loss
inputs = torch.tensor([1,2,3],dtype=torch.float32)
targets = torch.tensor([1,2,5],dtype=torch.float32)
inputs = torch.reshape(inputs,(1,1,1,3))
targets = torch.reshape(targets,(1,1,1,3))
loss = L1Loss(reduction='sum')
result = loss(inputs,targets)
print(result)
#2.
MSELoss
loss_mse = nn.MSELoss()
result_mse = loss_mse(result,targets)
print(result_mse)
#1.3333
交叉熵
x = torch.tensor([0.1,0.2,0.3])
y = torch.tensor([1])
x = torch.reshape(x,(1,3))
loss_cross = nn.CrossEntropyLoss()
result_cross = loss_cross(x,y)
print(result_cross)
#tensor(1.1019)
用之前的网络来对数据集进行分类,不过此时的分类是没有意义的,因为还没有经过训练。
import torch
import torchvision
from torch import nn
from torch.nn import MaxPool2d, Flatten, Conv2d, Linear
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False,
transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset,batch_size=1)
class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
self.model1 = nn.Sequential(
Conv2d(3, 32, kernel_size=5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, kernel_size=5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, kernel_size=5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64,10)
)
def forward(self, x):
x = self.model1(x)
return x
my_net = MyNet()
loss = nn.CrossEntropyLoss()
for data in dataloader:
imgs,targets = data
outputs = my_net(imgs)
result_loss = loss(outputs, targets)
print(result_loss)
#tensor(2.2306, grad_fn=<NllLossBackward>)
#tensor(2.2557, grad_fn=<NllLossBackward>)
#tensor(2.3920, grad_fn=<NllLossBackward>)
#......
# print(outputs)
# print(targets)
反向传播
- 计算实际输出和目标之间的差距
- 为我们更新输出提供一定的依据,方向传播,grad。
一开始是没有梯度的,后来运行完37行,
就出现梯度了,有利于反向传播。
优化器
eg:lr是学习速率
optimizer = optim.SGD(model.named_parameters(), lr=0.01, momentum=0.9)
optimizer = optim.Adam([('layer0', var1), ('layer1', var2)], lr=0.0001)
demo
import torch
import torchvision
from torch import nn
from torch.nn import MaxPool2d, Flatten, Conv2d, Linear
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False,
transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset,batch_size=1)
class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
self.model1 = nn.Sequential(
Conv2d(3, 32, kernel_size=5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, kernel_size=5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, kernel_size=5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64,10)
)
def forward(self, x):
x = self.model1(x)
return x
my_net = MyNet()
optim = torch.optim.SGD(my_net.parameters(), lr=0.01)
loss = nn.CrossEntropyLoss()
for epoch in range(20):
running_loss = 0.0
for data in dataloader:
imgs,targets = data
outputs = my_net(imgs)
result_loss = loss(outputs, targets)
#梯度清零
optim.zero_grad()
#优化器需要每个参数的梯度
result_loss.backward()
#给每个参数进行调优
optim.step()
running_loss += result_loss
print(running_loss)
#print(result_loss)
现有网络模型的使用以及修改
import torchvision.datasets
from torch import nn
from torchvision import transforms
#train_data = torchvision.datasets.ImageNet("./data_image_net",split='train',
# download=True,transform=transforms.ToTensor())
vgg16_false = torchvision.models.vgg16(pretrained=False)
#打印的是已经预训练好的网络架构,参数都是在训练之后的
vgg16_true = torchvision.models.vgg16(pretrained=True)
print(vgg16_true)
train_data = torchvision.datasets.CIFAR10(root='./data', train=True, download=False
,transform=torchvision.transforms.ToTensor())
#把vgg16当一个前置的网络结构
vgg16_true.classifier.add_module('add_linear',nn.Linear(1000, 10))
print(vgg16_true)
vgg16_false.classifier[6]=nn.Linear(4096, 10)
网络模型保存
方式1
模型结构+模型参数
import torch
import torchvision
vgg16 = torchvision.models.vgg16(pretrained=False)
#保存方式1
torch.save(vgg16,"vgg16_method1.pth")
加载模型
#保存方式1,加载模型
model = torch.load("vgg16_method1.pth")
print(model)
如果是用方式1并且是自定义模型的话,一定要让访问的代码能够访问到模型定义的地方。
方式2---字典类型
模型参数(官方推荐,好像是这样比较小)
#保存方式2
torch.save(vgg16.state_dict(),"vgg16_state_dict.pth")
加载模型,字典形式打印出来就看不见网络结构了,也可以再恢复成网络结构的。
#方式2加载方式
#如果你想恢复成网络模型结构
vgg16 = torchvision.models.vgg16(pretrained=False)
model = torch.load("vgg16_state_dict.pth")
print(model)
print(vgg16)
模型训练
item和本身的区别:
train.py
import torch
import torchvision
from model import *
train_data = torchvision.datasets.CIFAR10(root='./data', train=True, download=True,transform=torchvision.transforms.ToTensor())
test_data = torchvision.datasets.CIFAR10(root='./data', train=False, download=True,transform=torchvision.transforms.ToTensor())
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度是:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
#加载数据集
train_dataloader = torch.utils.data.DataLoader(train_data,
batch_size=64,
)
#ctrl+d复制本行到下一行
test_dataloader = torch.utils.data.DataLoader(test_data, batch_size=64,)
#创建网络模型
mynet = MyNet()
#损失函数,交叉熵
loss_function = torch.nn.CrossEntropyLoss()
#优化器
optimizer = torch.optim.SGD(mynet.parameters(), lr=0.001, momentum=0.9)
#设置训练网络的一些参数
#记录训练的次数
total_train_step = 0
total_test_step = 0
epoch = 10
for i in range(epoch):
print("第{}轮训练开始".format(i+1))
for data in train_dataloader:
imgs,targets = data
outputs = mynet(imgs)
loss = loss_function(outputs, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step += 1
print("训练次数:{},Loss{}".format(total_train_step,loss.item()))
model.py
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
#搭建神经网络
class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
self.model1 = nn.Sequential(
Conv2d(3, 32, kernel_size=5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, kernel_size=5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, kernel_size=5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64,10)
)
def forward(self, x):
x = self.model1(x)
return x
if __name__ == '__main__':
mynet = MyNet()
#64张图片
input = torch.ones((64,3,32,32))
output = mynet(input)
print(output.shape)
test
import torch
import torchvision
from torch.utils.tensorboard import SummaryWriter
from model import *
train_data = torchvision.datasets.CIFAR10(root='./data', train=True, download=True,transform=torchvision.transforms.ToTensor())
test_data = torchvision.datasets.CIFAR10(root='./data', train=False, download=True,transform=torchvision.transforms.ToTensor())
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度是:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
#加载数据集
train_dataloader = torch.utils.data.DataLoader(train_data,
batch_size=64,
)
#ctrl+d复制本行到下一行
test_dataloader = torch.utils.data.DataLoader(test_data, batch_size=64,)
#创建网络模型
mynet = MyNet()
#损失函数,交叉熵
loss_function = torch.nn.CrossEntropyLoss()
#优化器
optimizer = torch.optim.SGD(mynet.parameters(), lr=0.001, momentum=0.9)
#设置训练网络的一些参数
#记录训练的次数
total_train_step = 0
total_test_step = 0
epoch = 10
writer = SummaryWriter('./logs_train')
for i in range(epoch):
print("第{}轮训练开始".format(i+1))
for data in train_dataloader:
imgs,targets = data
outputs = mynet(imgs)
loss = loss_function(outputs, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step += 1
if total_train_step % 100 == 0:
print("训练次数:{},Loss{}".format(total_train_step,loss.item()))
writer.add_scalar('train_loss', loss.item(), total_train_step)
#测试步骤开始
total_test_loss = 0
total_accuracy = 0
with torch.no_grad():
for data in test_dataloader:
imgs , targets = data
outputs = mynet(imgs)
loss = loss_function(outputs, targets)
total_test_loss += loss.item() == targets
accurancy = outputs.argmax(1)
total_accuracy+=accurancy
print("整体测试集上的loss:{}".format(total_test_loss))
print("整体测试集上的正确率{}".format(total_accuracy))
writer.add_scalar("test_loss",total_test_loss, total_test_step)
writer.add_scalar("test_accuracy",total_accuracy, total_test_step)
total_test_step+=1
torch.save(mynet,"mynet_{}.pth".format(i))
print("模型已保存")
writer.close()
规范tips
当网络中有dropout层等东西的时候,可以调用他们
训练之前
mynet.train()
测试之前
mynet.eval()
使用GPU训练
思路:在如下几处加入相关代码
- 网络模型
- 数据(输入,标注)
- 损失函数
- .cuda
方法1
if torch.cuda.is_available():
loss_function = loss_function.cuda()
if torch.cuda.is_available():
imgs = imgs.cuda()
targets = targets.cuda()
方法2
.to(device)
Device = torch.device("cpu")
Device = torch.device("gpu")
#定义训练的设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#电脑上如果有多张显卡,这样来指定显卡
Torch.device("cuda:0")
Torch.device("cuda:1")
imgs, targets = imgs.to(device), targets.to(device)
import torch
import torch.nn as nn
import torchvision
import time
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.tensorboard import SummaryWriter
#定义训练的设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
self.model1 = nn.Sequential(
Conv2d(3, 32, kernel_size=5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, kernel_size=5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, kernel_size=5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64,10)
)
def forward(self, x):
x = self.model1(x)
return x
train_data = torchvision.datasets.CIFAR10(root='./data', train=True, download=True,transform=torchvision.transforms.ToTensor())
test_data = torchvision.datasets.CIFAR10(root='./data', train=False, download=True,transform=torchvision.transforms.ToTensor())
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度是:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
#加载数据集
train_dataloader = torch.utils.data.DataLoader(train_data,
batch_size=64,
)
#ctrl+d复制本行到下一行
test_dataloader = torch.utils.data.DataLoader(test_data, batch_size=64,)
#创建网络模型
mynet = MyNet()
mynet.to(device)
#损失函数,交叉熵
loss_function = torch.nn.CrossEntropyLoss()
loss_function.to(device)
# if torch.cuda.is_available():
# loss_function = loss_function.cuda()
#优化器
optimizer = torch.optim.SGD(mynet.parameters(), lr=0.001, momentum=0.9)
#设置训练网络的一些参数
#记录训练的次数
total_train_step = 0
total_test_step = 0
epoch = 10
writer = SummaryWriter('./logs_train')
start_time = time.time()
for i in range(epoch):
print("第{}轮训练开始".format(i+1))
for data in train_dataloader:
imgs,targets = data
imgs, targets = imgs.to(device), targets.to(device)
# if torch.cuda.is_available():
# imgs = imgs.cuda()
# targets = targets.cuda()
outputs = mynet(imgs)
loss = loss_function(outputs, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step += 1
if total_train_step % 100 == 0:
end_time = time.time()
print(end_time - start_time)
print("训练次数:{},Loss{}".format(total_train_step,loss.item()))
writer.add_scalar('train_loss', loss.item(), total_train_step)
#测试步骤开始
total_test_loss = 0
total_accuracy = 0
with torch.no_grad():
for data in test_dataloader:
imgs , targets = data
imgs, targets = imgs.to(device), targets.to(device)
# if torch.cuda.is_available():
# imgs = imgs.cuda()
# targets = targets.cuda()
outputs = mynet(imgs)
loss = loss_function(outputs, targets)
total_test_loss += loss.item()
accurancy = (outputs.argmax(1) == targets).sum()
total_accuracy+=accurancy.item()
print("整体测试集上的loss:{}".format(total_test_loss))
print("整体测试集上的正确率{}".format(total_accuracy))
writer.add_scalar("test_loss",total_test_loss, total_test_step)
writer.add_scalar("test_accuracy",total_accuracy, total_test_step)
total_test_step+=1
torch.save(mynet,"mynet_{}.pth".format(i))
print("模型已保存")
writer.close()
模型验证
利用已经训练好的模型,给它提供输入。
tips:
png图像是4通道,除了rgb以外ia,还有一个透明通道。
image = image.convert('RGB')
demo
import torch
import torchvision
from PIL import Image
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
self.model1 = nn.Sequential(
Conv2d(3, 32, kernel_size=5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, kernel_size=5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, kernel_size=5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64,10)
)
def forward(self, x):
x = self.model1(x)
return x
image_path = "./images/dog.png"
image = Image.open(image_path)
print(image)
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((32,32)),
torchvision.transforms.ToTensor()])
image = transform(image)
print(image.shape)
model = torch.load("mynet_9.pth",map_location=torch.device('cpu'))
print(model)
image = torch.reshape(image, (1,3,32,32))
model.eval()
with torch.no_grad():
output = model(image)
print(output)
print(output.argmax(1))