数据结构【二叉搜索树(BST)】

发布于:2025-05-09 ⋅ 阅读:(10) ⋅ 点赞:(0)

1. 二叉搜索树的概念

二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:

  1. 若它的左子树不为空,则左子树上所有结点的值都小于等于根结点的值。
  2. 若它的右子树不为空,则右子树上所有结点的值都大于等于根结点的值。
  3. 它的左右子树也分别为二叉搜索树。
  4. ⼆叉搜索树中可以支持插入相等的值,也可以不支持插入相等的值,具体看使用场景定义,map/set/multimap/multiset系列容器底层就是二叉搜索树,其中map/set不支持插入相等值,multimap/multiset支持插入相等值。
    在这里插入图片描述

2. 二叉搜索树的性能分析

最优情况下,二叉搜索树为完全二叉树(或者接近完全二叉树),其高度为: log2 N
最差情况下,二叉搜索树退化为单支树(或者类似单支),其高度为: N
所以综合而二叉搜索树增删查改时间复杂度为: O(N)
在这里插入图片描述

二分查找也可以实现 O(log2 N) 级别的查找效率,但是二分查找有两大缺陷:

  1. 需要存储在支持下标随机访问的结构中,并且有序。

  2. 插入和删除数据效率很低,因为存储在下标随机访问的结构中,插入和删除数据⼀般需要挪动数据。

这里也就体现出了平衡二叉搜索树的价值。

3.二叉搜索树的插入

  • 树为空,则直接新增结点,赋值给root指针
  • 树不空,按二叉搜索树性质,插入值比当前结点大往右走,插入值比当前结点小往左走找到空位置,插入新结点。
  • 如果支持插入相等的值,插入值跟当前结点相等的值可以往右走,也可以往左走,找到空位置,插入新结点。(要注意的是要保持逻辑一致性,插入相等的值不要一会往右走,一会往左走)

4. 二叉搜索树的查找

  • 从根开始比较,查找x,x比根的值大则往右边走查找,x比根值小则往左边走查找。
  • 最多查找高度次,走到到空,还没找到,这个值不存在。
  • 如果不支持插入相等的值,找到x即可返回
  • 如果支持插入相等的值,意味着有多个x存在,一般要求查找中序的第一个x。

5. 二叉搜索树的删除

首先查找元素是否在二叉搜索树中,如果不存在,则返回false。
如果查找元素存在则分以下四种情况分别处理:(假设要删除的结点为N)

  1. 要删除结点N左右孩子均为空
  2. 要删除的结点N左孩子位空,右孩子结点不为空
  3. 要删除的结点N右孩子位空,左孩子结点不为空
  4. 要删除的结点N左右孩子结点均不为空
    对应以上四种情况的解决方案:
  • 把N结点的父亲对应孩子指针指向空,直接删除N结点(情况1可以当成2或者3处理,效果是一样的)
  • 把N结点的父亲对应孩子指针指向N的右孩子,直接删除N结点
  • 把N结点的父亲对应孩子指针指向N的左孩子,直接删除N结点
  • 无法直接删除N结点,因为N的两个孩子无处安放,只能用替换法
    删除。找N左子树的值最大结点R(最右结点)或者N右子树的值最小结点R(最左结点)替代N,因为这两个结点中任意一个,放到N的位置,都满足二叉搜索树的规则。替代N的意思就是N和R的两个结点的值交换,转二变成删除R结点,R结点符合情况2或情况3,可以直接删除。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

6.二叉搜索树的实现代码

template<class K>
struct BSTNode
{
	K _key;
	BSTNode<K>* _left;
	BSTNode<K>* _right;
	BSTNode(const K& key)
		:_key(key)
		, _left(nullptr)
		, _right(nullptr)
	{
	}
};
// Binary Search Tree
template<class K>
class BSTree
{
	typedef BSTNode<K> Node;
public:
	bool Insert(const K& key)
	{
		if (_root == nullptr)
		{
			_root = new Node(key);
			return true;
		}
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_key < key)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_key > key)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{				
					return false;
			}
		}
		cur = new Node(key);
		if (parent->_key < key)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		return true;
	}
	bool Find(const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_key < key)
			{
				cur = cur->_right;
			}
			else if (cur->_key > key)
			{
				cur = cur->_left;
			}
			else
			{
				return true;
			}
		}
		return false;
	}
	bool Erase(const K& key)
	{
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_key < key)
			{
			
					parent = cur;
				cur = cur->_right;
			}
			else if (cur->_key > key)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				// 0-1个孩⼦的情况
				// 删除情况1 2 3均可以直接删除,改变⽗亲对应孩⼦指针指向即可
				if (cur->_left == nullptr)
				{
					if (parent == nullptr)
					{
						_root = cur->_right;
					}
					else
					{
						if (parent->_left == cur)
							parent->_left = cur->_right;
						else
							parent->_right = cur->_right;
					}
					delete cur;
					return true;
				}
				else if (cur->_right == nullptr)
				{
					if (parent == nullptr)
					{
						_root = cur->_left;
					}
					else
					{
						if (parent->_left == cur)
							parent->_left = cur->_left;
						else
							parent->_right = cur->_left;
					}
					delete cur;
					return true;
				}
				else				
				{
					// 2个孩⼦的情况
					// 删除情况4,替换法删除
					// 假设这⾥我们取右⼦树的最⼩结点作为替代结点去删除
					// 这⾥尤其要注意右⼦树的根就是最⼩情况的情况的处理,对应课件图中删8的情况
					// ⼀定要把cur给rightMinP,否会报错。
					Node * rightMinP = cur;
					Node* rightMin = cur->_right;
					while (rightMin->_left)
					{
					rightMinP = rightMin;
					rightMin = rightMin->_left;
					}
					cur->_key = rightMin->_key;
					if (rightMinP->_left == rightMin)
					rightMinP->_left = rightMin->_right;
					else
					rightMinP->_right = rightMin->_right;
					delete rightMin;
					return true;
				}
			}
		}
		return false;
	}
	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}
private:
	void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}
		_InOrder(root->_left);
		cout << root->_key << " ";
		_InOrder(root->_right);
	}
	
 private:
	 Node * _root = nullptr;
	 };

7. 二叉搜索树key和key/value使用场景

7.1 key搜索场景:

场景1:小区无人值守车库,那么物业会把买了车位的业主的
车牌号录入后台系统,车辆进入时扫描车牌在不在系统中,在则抬杆,不在则提示非本小区车辆,无法进入。
场景2:检查⼀篇英文章单词拼写是否正确,将词库中所有单词放⼊二叉搜索树,读取文章中的单词,查找是否在二叉搜索树中,不在则波浪线标红提示。

7.2 key/value搜索场景:

每一个关键码key,都有与之对应的值value,value可以任意类型对象。树的结构中(结点)除了需要存储key还要存储对应的value,增/删/查还是以key为关键字走二叉搜索树的规则进行比较,可以快速查
找到key对应的value。key/value的搜索场景实现的二叉树搜索树支持修改,但是不支持修改key,修改key破坏搜索树性质了,可以修改value。
场景1:简单中英互译字典,树的结构中(结点)存储key(英⽂)和vlaue(中文),搜索时输入英文,则同时查找到了英文对应的中文。
场景2:商场无人值守车库,入口进场时扫描车牌,记录车牌和入场时间,出口离场时,扫描车牌,查找入场时间,用当前时间-入场时间计算出停车时长,计算出停车费用,缴费后抬杆,车辆离场。
场景3:统计⼀篇⽂章中单词出现的次数,读取⼀个单词,查找单词是否存在,不存在这个说明第一次出现,(单词,1),单词存在,则++单词对应的次数。


网站公告

今日签到

点亮在社区的每一天
去签到