学习threejs,使用Physijs物理引擎,各种constraint约束限制

发布于:2025-05-17 ⋅ 阅读:(14) ⋅ 点赞:(0)

👨‍⚕️ 主页: gis分享者
👨‍⚕️ 感谢各位大佬 点赞👍 收藏⭐ 留言📝 加关注✅!
👨‍⚕️ 收录于专栏:threejs gis工程师



一、🍀前言

本文详细介绍如何基于threejs在三维场景中使用Physijs物理引擎,各种constraint约束限制,亲测可用。希望能帮助到您。一起学习,加油!加油!

1.1 ☘️Physijs 物理引擎

Three.js 的 Physi.js 是一个基于 Physijs 的物理引擎插件,用于为 Three.js 场景添加物理模拟(如碰撞检测、重力、刚体动力学等)。

1.1.1 ☘️代码示例

// 初始化 Physi.js 场景
const scene = new Physijs.Scene();

// 创建带有物理效果的立方体
const box = new Physijs.BoxMesh(
  new THREE.BoxGeometry(1, 1, 1),
  new THREE.MeshBasicMaterial({ color: 0xff0000 })
);
scene.add(box);

// 监听碰撞事件
box.addEventListener('collision', (otherObject) => {
  console.log('发生碰撞!', otherObject);
});

// 在动画循环中更新物理
function animate() {
  requestAnimationFrame(animate);
  scene.simulate(); // 更新物理模拟
  renderer.render(scene, camera);
}
animate();

1.1.2 ☘️核心方法/属性

Physijs.Scene
创建支持物理的 Three.js 场景。

mesh.setLinearVelocity()
设置物体的线性速度(移动速度)。

mesh.setAngularVelocity()
设置物体的角速度(旋转速度)。

mesh.addEventListener()
监听碰撞事件(如 ‘collision’)。

new Physijs.BoxMesh()
创建带有长方体碰撞体的物体。

new Physijs.SphereMesh()
创建带有球体碰撞体的物体。

scene.simulate()
在渲染循环中调用,更新物理模拟。

Physijs.createMaterial(material, friction, restitution)
创建物理材质,影响摩擦力和弹性。
参数:
material:Three.js 材质(如 THREE.MeshPhongMaterial)。
friction:摩擦系数(默认 0.8)。
restitution:弹性系数(默认 0)。

1.1.3 ☘️网格对象

Physijs.PlaneMesh // 这个网格可以用来创建一个厚度为0的平面。这样的平面也可以用BoxMesh对象包装一个高度很低的THREE.CubeGeometry来表示

Physijs.BoxMesh // 如果是类似方块的几何体,你可以使用这个网格。例如,它的属性跟THREE.CubeGeometry的属性很相配

Physijs.SphereMesh // 对于球形可以使用这个网格。它跟THREE.SphereGeometry的属性很相配

Physijs.CylinderMesh // 通过设置THREE.Cylinder的属性你可以创建出各种柱状图形。Physijs为各种柱性提供了不同网格。Physijs.CylinderMesh可以用于一般的、上下一致的圆柱形

Physijs.ConeMesh // 如果顶部的半径为0,底部的半径值大于0,那么你可以用THREE.Cylinder创建一个圆锥体。如果你想在这样一个对象上应用物理效果,那么可以使用的、最相匹配的网格类就是ConeMesh

Physijs.CapsuleMesh(胶囊网格) // 跟THREE.Cylinder属性很相似,但其底部和底部是圆的

Physijs.ConvexMesh(凸包网格) // Physijs.ConvexMesh是一种比较粗略的图形,可用于多数复杂退行。它可以创建一个模拟复杂图形的凸包

Physijs.ConcaveMesh // ConvexMesh是一个比较粗略的图形,而ConcaveMesh则可以对负责图形进行比较细致的表现。需要注意的是使用ConcaveMesh对效率的影响比较大

Physijs.HeightfieldMesh(高度场网格) // 这是一种非常特别的网格。通过该网格你可以从一个THREE.PlaneGeometry对象创建出一个高度场。

1.1.4 ☘️约束

PointConstraint // 通过这个约束,你可以将一个对象与另一个对象之间的位置固定下来。例如一个对象动了,另一个对象也会随着移动,它们之间的距离和方向保持不变

HingeConstraint // 通过活页约束,你可以限制一个对象只能像活页一样移动,例如门

SliderConstraint // 将对象的移动限制在一个轴上。例如移门

ConeTwistConstraint // 通过这个约束,你可以用一个对象限制另一个对象的旋转和移动。这个约束的功能类似于一个球削式关节。例如,胳膊在肩关节中的活动

DOFConstraint // 通过自由度约束,你可以限制对象在任意轴上的活动,你可以设置对象活动的额最小、最大角度。这是最灵活的约束方式

1.1.4 ☘️约束、材质Materials、暂停/恢复模拟、场景配置、更新对象的位置和旋转使用样例

1.1.4.1 ☘️约束使用样例

点对点:

var constraint = new Physijs.PointConstraint(
    physijs_mesh_a, // First object to be constrained
    physijs_mesh_b, // OPTIONAL second object - if omitted then physijs_mesh_1 will be constrained to the scene
    new THREE.Vector3( 0, 10, 0 ) // point in the scene to apply the constraint
);
scene.addConstraint( constraint );

铰链约束:

var constraint = new Physijs.HingeConstraint(
    physijs_mesh_a, // First object to be constrained
    physijs_mesh_b, // OPTIONAL second object - if omitted then physijs_mesh_1 will be constrained to the scene
    new THREE.Vector3( 0, 10, 0 ), // point in the scene to apply the constraint
    new THREE.Vector3( 1, 0, 0 ) // Axis along which the hinge lies - in this case it is the X axis
);
scene.addConstraint( constraint );
constraint.setLimits(
    low, // minimum angle of motion, in radians
    high, // maximum angle of motion, in radians
    bias_factor, // applied as a factor to constraint error
    relaxation_factor, // controls bounce at limit (0.0 == no bounce)
);
constraint.enableAngularMotor( target_velocity, acceration_force );
constraint.disableMotor();

滑块约束:

var constraint = new Physijs.SliderConstraint(
    physijs_mesh_a, // First object to be constrained
    physijs_mesh_b, // OPTIONAL second object - if omitted then physijs_mesh_1 will be constrained to the scene
    new THREE.Vector3( 0, 10, 0 ), // point in the scene to apply the constraint
    new THREE.Vector3( 1, 0, 0 ) // Axis along which the hinge lies - in this case it is the X axis
);
scene.addConstraint( constraint );
constraint.setLimits(
    linear_lower, // lower limit of linear movement, expressed in world units
    linear_upper, // upper limit of linear movement, expressed in world units
    angular_lower, // lower limit of angular movement, expressed in radians
    angular_upper // upper limit of angular movement, expressed in radians
);
constraint.setRestitution(
    linear, // amount of restitution when reaching the linear limits
    angular // amount of restitution when reaching the angular limits
);
constraint.enableLinearMotor( target_velocity, acceration_force );
constraint.disableLinearMotor();
constraint.enableAngularMotor( target_velocity, acceration_force );
constraint.disableAngularMotor();

锥形约束:

var constraint = new Physijs.ConeTwistConstraint(
    physijs_mesh_a, // First object to be constrained
    physijs_mesh_b, // Second object to be constrained
    new THREE.Vector3( 0, 10, 0 ), // point in the scene to apply the constraint
);
scene.addConstraint( constraint );
constraint.setLimit( x, y, z ); // rotational limit, in radians, for each axis
constraint.setMotorMaxImpulse( max_impulse ); // float value of the maximum impulse the motor can apply toward its target
constraint.setMotorTarget( target ); // target is the desired rotation for the constraint and can be expressed by a THREE.Vector3, THREE.Matrix4, or THREE.Quaternion
constraint.enableMotor();
constraint.disableMotor();

自由度约束:

var constraint = new Physijs.DOFConstraint(
    physijs_mesh_a, // First object to be constrained
    physijs_mesh_b, // OPTIONAL second object - if omitted then physijs_mesh_1 will be constrained to the scene
    new THREE.Vector3( 0, 10, 0 ), // point in the scene to apply the constraint
);
scene.addConstraint( constraint );
constraint.setLinearLowerLimit( new THREE.Vector3( -10, -5, 0 ) ); // sets the lower end of the linear movement along the x, y, and z axes.
constraint.setLinearUpperLimit( new THREE.Vector3( 10, 5, 0 ) ); // sets the upper end of the linear movement along the x, y, and z axes.
constraint.setAngularLowerLimit( new THREE.Vector3( 0, -Math.PI, 0 ) ); // sets the lower end of the angular movement, in radians, along the x, y, and z axes.
constraint.setAngularUpperLimit( new THREE.Vector3( 0, Math.PI, 0 ) ); // sets the upper end of the angular movement, in radians, along the x, y, and z axes.
constraint.configureAngularMotor(
    which, // which angular motor to configure - 0,1,2 match x,y,z
    low_limit, // lower limit of the motor
    high_limit, // upper limit of the motor
    velocity, // target velocity
    max_force // maximum force the motor can apply
);
constraint.enableAngularMotor( which ); // which angular motor to configure - 0,1,2 match x,y,z
constraint.disableAngularMotor( which ); // which angular motor to configure - 0,1,2 match x,y,z

冻结一个对象:
如果对象始终是静态的,例如地面,则可以0使用第三个参数创建网格时将其设置为质量:new Physijs.BoxMesh( geometry, material, 0)。任何具有质量的对象0将永远是静态的。

1.1.4.2 ☘️材质Materials使用样例

在THREE材质基础上增加了摩擦度和恢复度

var friction = 0.8; // 摩擦度
var restitution = 0.3; // 恢复度
var material = Physijs.createMaterial(
    new THREE.MeshBasicMaterial({ color: 0x888888 }),
    friction,
    restitution
);
var mesh = new Physijs.BoxMesh(
    new THREE.CubeGeometry( 5, 5, 5 ),
    material
);
1.1.4.3 ☘️暂停/恢复模拟使用样例
var render = function() {
    if (!isPaused) {
        scene.simulate();
    }
    renderer.render();
};
var unpauseSimulation = function() {
    isPaused = false;
    scene.onSimulationResume();
};

恢复模拟需要调用场景的onSimulationResume方法.

1.1.4.4 ☘️场景配置使用样例
  • fixedTimeStep default=1/60 此数字确定模拟步骤的模拟时间。数字越小,模拟越准确。
  • broadphase 指定将使用哪个宽带,选择是dynamic和sweepprune。
  • reportsize default 50 作为优化,包含对象位置的世界报告基于此数字预先初始化。最好将其设置为您的场景将具有的对象数量。
  • setGravity方法 default ( 0, -10, 0 ) 设定重力的数量和方向
  • setFixedTimeStep 在构造函数中default 1 / 60 重置fixedTimeStep给定的值
var scene = new Physijs.Scene({ reportsize: 50, fixedTimeStep: 1 / 60 });
1.1.4.5 ☘️更新对象的位置和旋转使用样例

有一个方面,无法与three.js进行无缝集成:更改对象的位置和/或旋转。如果这样做,您必须将该对象__dirtyPosition或__dirtyRotation标志设置为true,否则将从模拟中的最后一个已知值覆盖

var mesh = new Physijs.BoxMesh( geometry, material );
scene.add( mesh );

var render = function() {
    // Change the object's position
    mesh.position.set( 0, 0, 0 );
    mesh.__dirtyPosition = true;

    // Change the object's rotation
    mesh.rotation.set(0, 90, 180);
    mesh.__dirtyRotation = true;

    // You may also want to cancel the object's velocity
    mesh.setLinearVelocity(new THREE.Vector3(0, 0, 0));
    mesh.setAngularVelocity(new THREE.Vector3(0, 0, 0));

    scene.simulate();
    renderer.render();
};

二、🍀使用Physijs物理引擎,各种constraint约束限制

1. ☘️实现思路

  • 1、引入‘physi.js’,创建Physijs物理引擎三维场景scene,设置scene场景重力信息。
  • 2、初始化camera相机,定义相机位置 camera.position.set,设置相机方向camera.lookAt,场景scene添加camera。
  • 3、创建THREE.SpotLight聚光灯光源light,设置light位置,scene场景加入light。
  • 4、加载几何模型:定义createGround方法,使用‘floor-wood.jpg’木纹贴图创建地面网格对象ground以及四周突出边框网格对象borderLeft、borderRight、borderTop、borderBottom,ground添加borderLeft、borderRight、borderTop、borderBottom。定义createLeftFlipper、createRightFlipper方法,用于创建立方体物理网格对象,并设置活页约束,调用这两个方法。定义createSliderBottom、createSliderTop方法,用于创建立方体物理网格对象,并设置单轴线约束,调用这两个方法。定义createConeTwist方法,创建1个球体物理网格对象、一个立方体物理网格对象,并设置球削式关节约束,调用该个方法。定义createPointToPoint方法,创建2个球体物理网格对象,并设置点到点位置和方向固定约束,调用该个方法。定义controls方法,用于控制上面创建的PointConstraint、HingeConstraint、SliderConstraint和ConeTwistConstraint约束,定义添加、移除物理球体网格对象方法。调用createGround方法。定义render方法,进行三维场景的渲染。具体代码参考下面代码样例。
  • 5、加入gui控制。加入stats监控器,监控帧数信息。

2. ☘️代码样例

<!DOCTYPE html>
<html>
<head>
    <style>
        body {
            margin: 0;
            overflow: hidden;
            background-color: #000000;
        }
    </style>

    <title>学习threejs,使用Physijs物理引擎,各种constraint约束限制</title>
    <script type="text/javascript" src="../libs/three.js"></script>
    <script type="text/javascript" src="../libs/stats.js"></script>
    <script type="text/javascript" src="../libs/physi.js"></script>
    <script type="text/javascript" src="../libs/dat.gui.js"></script>
    <script type="text/javascript" src="../libs/chroma.js"></script>

    <script type="text/javascript">
        'use strict';
        Physijs.scripts.worker = '../libs/physijs_worker.js';
        Physijs.scripts.ammo = '../libs/ammo.js';

        var scale = chroma.scale(['white', 'blue', 'red', 'yellow']);

        var initScene, render, applyForce, setMousePosition, mouse_position,
                ground_material, box_material,
                projector, renderer, render_stats, physics_stats, scene, ground, light, camera, box, boxes = [];

        initScene = function () {
            projector = new THREE.Projector;

            renderer = new THREE.WebGLRenderer({antialias: true});
            renderer.setSize(window.innerWidth, window.innerHeight);

            renderer.setClearColor(new THREE.Color(0x000000));
            renderer.shadowMapEnabled = true;


            document.getElementById('viewport').appendChild(renderer.domElement);

            render_stats = new Stats();
            render_stats.domElement.style.position = 'absolute';
            render_stats.domElement.style.top = '1px';
            render_stats.domElement.style.right = '1px';
            render_stats.domElement.style.zIndex = 100;
            document.getElementById('viewport').appendChild(render_stats.domElement);


            scene = new Physijs.Scene({reportSize: 10, fixedTimeStep: 1 / 60});

            scene.setGravity(new THREE.Vector3(0, -10, 0));

            camera = new THREE.PerspectiveCamera(
                    35,
                    window.innerWidth / window.innerHeight,
                    1,
                    1000
            );
            camera.position.set(85, 65, 65);
            camera.lookAt(new THREE.Vector3(0, 0, 0));
            scene.add(camera);

            // 创建THREE.SpotLight聚光灯光源light,设置light的位置和投影
            light = new THREE.SpotLight(0xFFFFFF);
            light.position.set(20, 50, 50);
            light.castShadow = true;
            light.shadowMapDebug = true;
            light.shadowCameraNear = 10;
            light.shadowCameraFar = 100;

			// scene添加light
            scene.add(light);


            var meshes = [];

            createGround();
            // 创建立方体物理网格对象,并设置活页约束
            var flipperLeftConstraint = createLeftFlipper();
            var flipperRightConstraint = createRightFlipper();
            //  创建立方体物理网格对象,并设置单轴线约束
            var sliderBottomConstraint = createSliderBottom();
            var sliderTopConstraint = createSliderTop();
            //  创建1个球体物理网格对象、一个立方体物理网格对象,并设置球削式关节约束
            var coneTwistConstraint = createConeTwist();
			// 创建2个球体物理网格对象,并设置点到点位置和方向固定约束
            var point2point = createPointToPoint(true);


            var controls = new function () {
                this.enableMotor = false;
                this.acceleration = 2;
                this.velocity = -10;

                this.enableConeTwistMotor = false;
                this.motorTargetX = 0;
                this.motorTargetY = 0;
                this.motorTargetZ = 0;

                this.updateCone = function () {
                    if (controls.enableConeTwistMotor) {
                        coneTwistConstraint.enableMotor();
                        coneTwistConstraint.setMotorTarget(new THREE.Vector3(controls.motorTargetX, controls.motorTargetY, controls.motorTargetZ));
                    } else {
                        coneTwistConstraint.disableMotor();
                    }

                };

                this.updateMotor = function () {
                    if (controls.enableMotor) {
                        // 启用重力
                        flipperLeftConstraint.disableMotor();
                        flipperLeftConstraint.enableAngularMotor(controls.velocity, controls.acceleration);
                        flipperRightConstraint.disableMotor();
                        flipperRightConstraint.enableAngularMotor(-1 * controls.velocity, controls.acceleration);
                    } else {
                        flipperLeftConstraint.disableMotor();
                        flipperRightConstraint.disableMotor();
                    }
                };

                this.sliderLeft = function () {
                    sliderBottomConstraint.disableLinearMotor();
                    sliderBottomConstraint.enableLinearMotor(controls.velocity, controls.acceleration);
                    sliderTopConstraint.disableLinearMotor();
                    sliderTopConstraint.enableLinearMotor(controls.velocity, controls.acceleration);
                };

                this.sliderRight = function () {
                    sliderBottomConstraint.disableLinearMotor();
                    sliderBottomConstraint.enableLinearMotor(-1 * controls.velocity, controls.acceleration);
                    sliderTopConstraint.disableLinearMotor();
                    sliderTopConstraint.enableLinearMotor(-1 * controls.velocity, controls.acceleration);
                };

                this.clearMeshes = function () {
                    meshes.forEach(function (e) {
                        scene.remove(e);
                    });
                    meshes = [];
                };

                this.addSpheres = function () {
                    var colorSphere = scale(Math.random()).hex();
                    for (var i = 0; i < 5; i++) {

                        box = new Physijs.SphereMesh(
                                new THREE.SphereGeometry(2, 20),
                                Physijs.createMaterial(
                                        new THREE.MeshPhongMaterial(
                                                {
                                                    color: colorSphere,
                                                    opacity: 0.8,
                                                    transparent: true
                                        controls.sphereFriction,
                                        controls.sphereRestitution
                                )
                                , 0.1);
                        box.castShadow = true;
                        box.receiveShadow = true;
                        box.position.set(
                                Math.random() * 50 - 25,
                                20 + Math.random() * 5,
                                Math.random() * 5
                        );
                        meshes.push(box);
                        scene.add(box);
                    }
                };
            };

            controls.updateMotor();

            var gui = new dat.GUI();
            gui.domElement.style.position = 'absolute';
            gui.domElement.style.top = '20px';
            gui.domElement.style.left = '20px';

            var generalFolder = gui.addFolder('general');
            generalFolder.add(controls, "acceleration", 0, 15).onChange(controls.updateMotor);
            generalFolder.add(controls, "velocity", -10, 10).onChange(controls.updateMotor);

            var hingeFolder = gui.addFolder('hinge');
            hingeFolder.add(controls, "enableMotor").onChange(controls.updateMotor);

            var sliderFolder = gui.addFolder('sliders');
            sliderFolder.add(controls, "sliderLeft").onChange(controls.sliderLeft);
            sliderFolder.add(controls, "sliderRight").onChange(controls.sliderRight);

            var coneTwistFolder = gui.addFolder('coneTwist');
            coneTwistFolder.add(controls, "enableConeTwistMotor").onChange(controls.updateCone);
            coneTwistFolder.add(controls, "motorTargetX", -Math.PI / 2, Math.PI / 2).onChange(controls.updateCone);
            coneTwistFolder.add(controls, "motorTargetY", -Math.PI / 2, Math.PI / 2).onChange(controls.updateCone);
            coneTwistFolder.add(controls, "motorTargetZ", -Math.PI / 2, Math.PI / 2).onChange(controls.updateCone);

            var spheresFolder = gui.addFolder('spheres');
            spheresFolder.add(controls, "clearMeshes").onChange(controls.updateMotor);
            spheresFolder.add(controls, "addSpheres").onChange(controls.updateMotor);


            requestAnimationFrame(render);
            scene.simulate();
        };

        function createGround() {
            // Materials
            ground_material = Physijs.createMaterial(
                    new THREE.MeshPhongMaterial(
                            {
//                                color: 0xaaaaaa,
                                map: THREE.ImageUtils.loadTexture('../assets/textures/general/floor-wood.jpg')
                            }),
                    .9, // high friction
                    .7 // low restitution
            );

            // Ground
            ground = new Physijs.BoxMesh(
                    new THREE.BoxGeometry(60, 1, 65),
                    ground_material,
                    0
            );

            ground.receiveShadow = true;


            var borderLeft = new Physijs.BoxMesh(
                    new THREE.BoxGeometry(2, 6, 65),
                    ground_material,
                    0
            );

            borderLeft.position.x = -31;
            borderLeft.position.y = 2;
            borderLeft.receiveShadow = true;


            ground.add(borderLeft);

            var borderRight = new Physijs.BoxMesh(new THREE.BoxGeometry(2, 6, 65),
                    ground_material,
                    0
            );
            borderRight.position.x = 31;
            borderRight.position.y = 2;
            borderRight.receiveShadow = true;

            ground.add(borderRight);


            var borderBottom = new Physijs.BoxMesh(
                    new THREE.BoxGeometry(64, 6, 2),
                    ground_material,
                    0
            );

            borderBottom.position.z = 32;
            borderBottom.position.y = 1.5;
            borderBottom.receiveShadow = true;
            ground.add(borderBottom);

            var borderTop = new Physijs.BoxMesh(
                    new THREE.BoxGeometry(64, 6, 2),
                    ground_material,
                    0
            );

            borderTop.position.z = -32;
            borderTop.position.y = 2;
            borderTop.receiveShadow = true;

            ground.add(borderTop);

            ground.receiveShadow = true;

            scene.add(ground);
        }

        function createConeTwist() {
            var baseMesh = new THREE.SphereGeometry(1);
            var armMesh = new THREE.BoxGeometry(2, 12, 3);

            var objectOne = new Physijs.BoxMesh(baseMesh, Physijs.createMaterial(
                    new THREE.MeshPhongMaterial({color: 0x4444ff, transparent: true, opacity: 0.7}), 0, 0), 0);
            objectOne.position.z = 0;
            objectOne.position.x = 20;
            objectOne.position.y = 15.5;
            objectOne.castShadow = true;
            scene.add(objectOne);


            var objectTwo = new Physijs.SphereMesh(armMesh, Physijs.createMaterial(
                    new THREE.MeshPhongMaterial({color: 0x4444ff, transparent: true, opacity: 0.7}), 0, 0), 10);
            objectTwo.position.z = 0;
            objectTwo.position.x = 20;
            objectTwo.position.y = 7.5;
            scene.add(objectTwo);

            objectTwo.castShadow = true;

            //position is the position of the axis, relative to the ref, based on the current position
            var constraint = new Physijs.ConeTwistConstraint(objectOne, objectTwo, objectOne.position);

            scene.addConstraint(constraint);
            // set limit to quarter circle for each axis
            constraint.setLimit(0.5 * Math.PI, 0.5 * Math.PI, 0.5 * Math.PI);
            constraint.setMaxMotorImpulse(1);
            constraint.setMotorTarget(new THREE.Vector3(0, 0, 0)); // desired rotation

            return constraint;
        }

        function createPointToPoint() {
            var obj1 = new THREE.SphereGeometry(2);
            var obj2 = new THREE.SphereGeometry(2);

            var objectOne = new Physijs.SphereMesh(obj1, Physijs.createMaterial(
                    new THREE.MeshPhongMaterial({color: 0xff4444, transparent: true, opacity: 0.7}), 0, 0));
            objectOne.position.z = -18;
            objectOne.position.x = -10;
            objectOne.position.y = 2;
            objectOne.castShadow = true;
            scene.add(objectOne);

            var objectTwo = new Physijs.SphereMesh(obj2, Physijs.createMaterial(
                    new THREE.MeshPhongMaterial({color: 0xff4444, transparent: true, opacity: 0.7}), 0, 0));
            objectTwo.position.z = -5;
            objectTwo.position.x = -20;
            objectTwo.position.y = 2;
            objectTwo.castShadow = true;
            scene.add(objectTwo);

            // if no position two, its fixed to a position. Else fixed to objectTwo and both will move
            var constraint = new Physijs.PointConstraint(objectOne, objectTwo, objectTwo.position);
            scene.addConstraint(constraint);
        }

        function createSliderBottom() {
            var sliderCube = new THREE.BoxGeometry(12, 2, 2);


            var sliderMesh = new Physijs.BoxMesh(sliderCube, Physijs.createMaterial(
                    new THREE.MeshPhongMaterial({color: 0x44ff44, opacity: 0.6, transparent: true}), 0, 0), 0.01);
            sliderMesh.position.z = 20;
            sliderMesh.position.x = 6;
            sliderMesh.position.y = 1.5;
            sliderMesh.castShadow = true;


            scene.add(sliderMesh);
            var constraint = new Physijs.SliderConstraint(sliderMesh, new THREE.Vector3(0, 0, 0), new THREE.Vector3(0, 1, 0));

            scene.addConstraint(constraint);
            constraint.setLimits(-10, 10, 0, 0);
            constraint.setRestitution(0.1, 0.1);

            return constraint;
        }

        function createSliderTop() {
            var sliderSphere = new THREE.BoxGeometry(7, 2, 7);


            var sliderMesh = new Physijs.BoxMesh(sliderSphere, Physijs.createMaterial(
                    new THREE.MeshPhongMaterial({color: 0x44ff44, transparent: true, opacity: 0.5}), 0, 0), 10);
            sliderMesh.position.z = -15;
            sliderMesh.position.x = -20;
            sliderMesh.position.y = 1.5;
            scene.add(sliderMesh);
            sliderMesh.castShadow = true;

            //position is the position of the axis, relative to the ref, based on the current position
            var constraint = new Physijs.SliderConstraint(sliderMesh, new THREE.Vector3(-10, 0, 20), new THREE.Vector3(Math.PI / 2, 0, 0));

            scene.addConstraint(constraint);
            constraint.setLimits(-20, 10, 0.5, -0, 5);
            constraint.setRestitution(0.2, 0.1);

            return constraint;
        }

        function createLeftFlipper() {
            var flipperLeft = new Physijs.BoxMesh(
                    new THREE.BoxGeometry(12, 2, 2), Physijs.createMaterial(new THREE.MeshPhongMaterial(
                            {opacity: 0.6, transparent: true}
                    )), 0.3
            );
            flipperLeft.position.x = -6;
            flipperLeft.position.y = 2;
            flipperLeft.position.z = 0;
            flipperLeft.castShadow = true;
            scene.add(flipperLeft);
            var flipperLeftPivot = new Physijs.SphereMesh(
                    new THREE.BoxGeometry(1, 1, 1), ground_material, 0);

            flipperLeftPivot.position.y = 1;
            flipperLeftPivot.position.x = -15;
            flipperLeftPivot.position.z = 0;
            flipperLeftPivot.rotation.y = 1.4;
            flipperLeftPivot.castShadow = true;

            scene.add(flipperLeftPivot);

            // 当观察轴时,使用的是物体二的轴。
            // 只要物体二的轴与场景的轴一致,就不会有问题。
            // 旋转和轴是相对于物体二的。如果位置等于立方体二的位置,那么效果就会如预期一样
            var constraint = new Physijs.HingeConstraint(flipperLeft, flipperLeftPivot, flipperLeftPivot.position, new THREE.Vector3(0, 1, 0));
            scene.addConstraint(constraint);

            constraint.setLimits(
                    -2.2,
                    -0.6,
                    0.1,
                    0
            );

            return constraint;
        }

        function createRightFlipper() {
            var flipperright = new Physijs.BoxMesh(
                    new THREE.BoxGeometry(12, 2, 2), Physijs.createMaterial(new THREE.MeshPhongMaterial(
                            {opacity: 0.6, transparent: true}
                    )), 0.3
            );
            flipperright.position.x = 8;
            flipperright.position.y = 2;
            flipperright.position.z = 0;
            flipperright.castShadow = true;
            scene.add(flipperright);
            var flipperLeftPivot = new Physijs.SphereMesh(
                    new THREE.BoxGeometry(1, 1, 1), ground_material, 0);

            flipperLeftPivot.position.y = 2;
            flipperLeftPivot.position.x = 15;
            flipperLeftPivot.position.z = 0;
            flipperLeftPivot.rotation.y = 1.4;
            flipperLeftPivot.castShadow = true;

            scene.add(flipperLeftPivot);

            // 当观察轴时,使用的是物体二的轴。
            // 只要物体二的轴与场景的轴一致,就不会有问题。
            // 旋转和轴是相对于物体二的。如果位置等于立方体二的位置,那么效果就会如预期一样
            var constraint = new Physijs.HingeConstraint(flipperright, flipperLeftPivot, flipperLeftPivot.position, new THREE.Vector3(0, 1, 0));
//            var constraint = new Physijs.HingeConstraint(cube1, new THREE.Vector3(0,0,0), new THREE.Vector3(0,1,0));
            scene.addConstraint(constraint);

            constraint.setLimits(
                    -2.2, // 从点对象1开始(向后)的最小运动角度(以弧度为单位)
                    -0.6, // 从点对象1开始(向前)的最大运动角度(以弧度为单位)
                    0.1, // 作为约束错误的一个因素应用,当约束被触发时,kantelpunt被移动的程度有多大
                    0 // 控制在极限时的弹跳(0.0表示无弹跳)
            );

            return constraint;
        }
        var direction = 1;

        render = function () {
            requestAnimationFrame(render);
            renderer.render(scene, camera);
            render_stats.update();
            ground.__dirtyRotation = true;
            scene.simulate(undefined, 2);
        };

        window.onload = initScene;
    </script>
</head>
<body>
<div id="viewport"></div>
</body>
</html>

效果如下:
在这里插入图片描述


网站公告

今日签到

点亮在社区的每一天
去签到