👨⚕️ 主页: gis分享者
👨⚕️ 感谢各位大佬 点赞👍 收藏⭐ 留言📝 加关注✅!
👨⚕️ 收录于专栏:threejs gis工程师
文章目录
一、🍀前言
本文详细介绍如何基于threejs在三维场景中使用Physijs物理引擎,各种constraint约束限制,亲测可用。希望能帮助到您。一起学习,加油!加油!
1.1 ☘️Physijs 物理引擎
Three.js 的 Physi.js 是一个基于 Physijs 的物理引擎插件,用于为 Three.js 场景添加物理模拟(如碰撞检测、重力、刚体动力学等)。
1.1.1 ☘️代码示例
// 初始化 Physi.js 场景
const scene = new Physijs.Scene();
// 创建带有物理效果的立方体
const box = new Physijs.BoxMesh(
new THREE.BoxGeometry(1, 1, 1),
new THREE.MeshBasicMaterial({ color: 0xff0000 })
);
scene.add(box);
// 监听碰撞事件
box.addEventListener('collision', (otherObject) => {
console.log('发生碰撞!', otherObject);
});
// 在动画循环中更新物理
function animate() {
requestAnimationFrame(animate);
scene.simulate(); // 更新物理模拟
renderer.render(scene, camera);
}
animate();
1.1.2 ☘️核心方法/属性
Physijs.Scene
创建支持物理的 Three.js 场景。
mesh.setLinearVelocity()
设置物体的线性速度(移动速度)。
mesh.setAngularVelocity()
设置物体的角速度(旋转速度)。
mesh.addEventListener()
监听碰撞事件(如 ‘collision’)。
new Physijs.BoxMesh()
创建带有长方体碰撞体的物体。
new Physijs.SphereMesh()
创建带有球体碰撞体的物体。
scene.simulate()
在渲染循环中调用,更新物理模拟。
Physijs.createMaterial(material, friction, restitution)
创建物理材质,影响摩擦力和弹性。
参数:
material:Three.js 材质(如 THREE.MeshPhongMaterial)。
friction:摩擦系数(默认 0.8)。
restitution:弹性系数(默认 0)。
1.1.3 ☘️网格对象
Physijs.PlaneMesh // 这个网格可以用来创建一个厚度为0的平面。这样的平面也可以用BoxMesh对象包装一个高度很低的THREE.CubeGeometry来表示
Physijs.BoxMesh // 如果是类似方块的几何体,你可以使用这个网格。例如,它的属性跟THREE.CubeGeometry的属性很相配
Physijs.SphereMesh // 对于球形可以使用这个网格。它跟THREE.SphereGeometry的属性很相配
Physijs.CylinderMesh // 通过设置THREE.Cylinder的属性你可以创建出各种柱状图形。Physijs为各种柱性提供了不同网格。Physijs.CylinderMesh可以用于一般的、上下一致的圆柱形
Physijs.ConeMesh // 如果顶部的半径为0,底部的半径值大于0,那么你可以用THREE.Cylinder创建一个圆锥体。如果你想在这样一个对象上应用物理效果,那么可以使用的、最相匹配的网格类就是ConeMesh
Physijs.CapsuleMesh(胶囊网格) // 跟THREE.Cylinder属性很相似,但其底部和底部是圆的
Physijs.ConvexMesh(凸包网格) // Physijs.ConvexMesh是一种比较粗略的图形,可用于多数复杂退行。它可以创建一个模拟复杂图形的凸包
Physijs.ConcaveMesh // ConvexMesh是一个比较粗略的图形,而ConcaveMesh则可以对负责图形进行比较细致的表现。需要注意的是使用ConcaveMesh对效率的影响比较大
Physijs.HeightfieldMesh(高度场网格) // 这是一种非常特别的网格。通过该网格你可以从一个THREE.PlaneGeometry对象创建出一个高度场。
1.1.4 ☘️约束
PointConstraint // 通过这个约束,你可以将一个对象与另一个对象之间的位置固定下来。例如一个对象动了,另一个对象也会随着移动,它们之间的距离和方向保持不变
HingeConstraint // 通过活页约束,你可以限制一个对象只能像活页一样移动,例如门
SliderConstraint // 将对象的移动限制在一个轴上。例如移门
ConeTwistConstraint // 通过这个约束,你可以用一个对象限制另一个对象的旋转和移动。这个约束的功能类似于一个球削式关节。例如,胳膊在肩关节中的活动
DOFConstraint // 通过自由度约束,你可以限制对象在任意轴上的活动,你可以设置对象活动的额最小、最大角度。这是最灵活的约束方式
1.1.4 ☘️约束、材质Materials、暂停/恢复模拟、场景配置、更新对象的位置和旋转使用样例
1.1.4.1 ☘️约束使用样例
点对点:
var constraint = new Physijs.PointConstraint(
physijs_mesh_a, // First object to be constrained
physijs_mesh_b, // OPTIONAL second object - if omitted then physijs_mesh_1 will be constrained to the scene
new THREE.Vector3( 0, 10, 0 ) // point in the scene to apply the constraint
);
scene.addConstraint( constraint );
铰链约束:
var constraint = new Physijs.HingeConstraint(
physijs_mesh_a, // First object to be constrained
physijs_mesh_b, // OPTIONAL second object - if omitted then physijs_mesh_1 will be constrained to the scene
new THREE.Vector3( 0, 10, 0 ), // point in the scene to apply the constraint
new THREE.Vector3( 1, 0, 0 ) // Axis along which the hinge lies - in this case it is the X axis
);
scene.addConstraint( constraint );
constraint.setLimits(
low, // minimum angle of motion, in radians
high, // maximum angle of motion, in radians
bias_factor, // applied as a factor to constraint error
relaxation_factor, // controls bounce at limit (0.0 == no bounce)
);
constraint.enableAngularMotor( target_velocity, acceration_force );
constraint.disableMotor();
滑块约束:
var constraint = new Physijs.SliderConstraint(
physijs_mesh_a, // First object to be constrained
physijs_mesh_b, // OPTIONAL second object - if omitted then physijs_mesh_1 will be constrained to the scene
new THREE.Vector3( 0, 10, 0 ), // point in the scene to apply the constraint
new THREE.Vector3( 1, 0, 0 ) // Axis along which the hinge lies - in this case it is the X axis
);
scene.addConstraint( constraint );
constraint.setLimits(
linear_lower, // lower limit of linear movement, expressed in world units
linear_upper, // upper limit of linear movement, expressed in world units
angular_lower, // lower limit of angular movement, expressed in radians
angular_upper // upper limit of angular movement, expressed in radians
);
constraint.setRestitution(
linear, // amount of restitution when reaching the linear limits
angular // amount of restitution when reaching the angular limits
);
constraint.enableLinearMotor( target_velocity, acceration_force );
constraint.disableLinearMotor();
constraint.enableAngularMotor( target_velocity, acceration_force );
constraint.disableAngularMotor();
锥形约束:
var constraint = new Physijs.ConeTwistConstraint(
physijs_mesh_a, // First object to be constrained
physijs_mesh_b, // Second object to be constrained
new THREE.Vector3( 0, 10, 0 ), // point in the scene to apply the constraint
);
scene.addConstraint( constraint );
constraint.setLimit( x, y, z ); // rotational limit, in radians, for each axis
constraint.setMotorMaxImpulse( max_impulse ); // float value of the maximum impulse the motor can apply toward its target
constraint.setMotorTarget( target ); // target is the desired rotation for the constraint and can be expressed by a THREE.Vector3, THREE.Matrix4, or THREE.Quaternion
constraint.enableMotor();
constraint.disableMotor();
自由度约束:
var constraint = new Physijs.DOFConstraint(
physijs_mesh_a, // First object to be constrained
physijs_mesh_b, // OPTIONAL second object - if omitted then physijs_mesh_1 will be constrained to the scene
new THREE.Vector3( 0, 10, 0 ), // point in the scene to apply the constraint
);
scene.addConstraint( constraint );
constraint.setLinearLowerLimit( new THREE.Vector3( -10, -5, 0 ) ); // sets the lower end of the linear movement along the x, y, and z axes.
constraint.setLinearUpperLimit( new THREE.Vector3( 10, 5, 0 ) ); // sets the upper end of the linear movement along the x, y, and z axes.
constraint.setAngularLowerLimit( new THREE.Vector3( 0, -Math.PI, 0 ) ); // sets the lower end of the angular movement, in radians, along the x, y, and z axes.
constraint.setAngularUpperLimit( new THREE.Vector3( 0, Math.PI, 0 ) ); // sets the upper end of the angular movement, in radians, along the x, y, and z axes.
constraint.configureAngularMotor(
which, // which angular motor to configure - 0,1,2 match x,y,z
low_limit, // lower limit of the motor
high_limit, // upper limit of the motor
velocity, // target velocity
max_force // maximum force the motor can apply
);
constraint.enableAngularMotor( which ); // which angular motor to configure - 0,1,2 match x,y,z
constraint.disableAngularMotor( which ); // which angular motor to configure - 0,1,2 match x,y,z
冻结一个对象:
如果对象始终是静态的,例如地面,则可以0使用第三个参数创建网格时将其设置为质量:new Physijs.BoxMesh( geometry, material, 0)。任何具有质量的对象0将永远是静态的。
1.1.4.2 ☘️材质Materials使用样例
在THREE材质基础上增加了摩擦度和恢复度
var friction = 0.8; // 摩擦度
var restitution = 0.3; // 恢复度
var material = Physijs.createMaterial(
new THREE.MeshBasicMaterial({ color: 0x888888 }),
friction,
restitution
);
var mesh = new Physijs.BoxMesh(
new THREE.CubeGeometry( 5, 5, 5 ),
material
);
1.1.4.3 ☘️暂停/恢复模拟使用样例
var render = function() {
if (!isPaused) {
scene.simulate();
}
renderer.render();
};
var unpauseSimulation = function() {
isPaused = false;
scene.onSimulationResume();
};
恢复模拟需要调用场景的onSimulationResume方法.
1.1.4.4 ☘️场景配置使用样例
- fixedTimeStep default=1/60 此数字确定模拟步骤的模拟时间。数字越小,模拟越准确。
- broadphase 指定将使用哪个宽带,选择是dynamic和sweepprune。
- reportsize default 50 作为优化,包含对象位置的世界报告基于此数字预先初始化。最好将其设置为您的场景将具有的对象数量。
- setGravity方法 default ( 0, -10, 0 ) 设定重力的数量和方向
- setFixedTimeStep 在构造函数中default 1 / 60 重置fixedTimeStep给定的值
var scene = new Physijs.Scene({ reportsize: 50, fixedTimeStep: 1 / 60 });
1.1.4.5 ☘️更新对象的位置和旋转使用样例
有一个方面,无法与three.js进行无缝集成:更改对象的位置和/或旋转。如果这样做,您必须将该对象__dirtyPosition或__dirtyRotation标志设置为true,否则将从模拟中的最后一个已知值覆盖
var mesh = new Physijs.BoxMesh( geometry, material );
scene.add( mesh );
var render = function() {
// Change the object's position
mesh.position.set( 0, 0, 0 );
mesh.__dirtyPosition = true;
// Change the object's rotation
mesh.rotation.set(0, 90, 180);
mesh.__dirtyRotation = true;
// You may also want to cancel the object's velocity
mesh.setLinearVelocity(new THREE.Vector3(0, 0, 0));
mesh.setAngularVelocity(new THREE.Vector3(0, 0, 0));
scene.simulate();
renderer.render();
};
二、🍀使用Physijs物理引擎,各种constraint约束限制
1. ☘️实现思路
- 1、引入‘physi.js’,创建Physijs物理引擎三维场景scene,设置scene场景重力信息。
- 2、初始化camera相机,定义相机位置 camera.position.set,设置相机方向camera.lookAt,场景scene添加camera。
- 3、创建THREE.SpotLight聚光灯光源light,设置light位置,scene场景加入light。
- 4、加载几何模型:定义createGround方法,使用‘floor-wood.jpg’木纹贴图创建地面网格对象ground以及四周突出边框网格对象borderLeft、borderRight、borderTop、borderBottom,ground添加borderLeft、borderRight、borderTop、borderBottom。定义createLeftFlipper、createRightFlipper方法,用于创建立方体物理网格对象,并设置活页约束,调用这两个方法。定义createSliderBottom、createSliderTop方法,用于创建立方体物理网格对象,并设置单轴线约束,调用这两个方法。定义createConeTwist方法,创建1个球体物理网格对象、一个立方体物理网格对象,并设置球削式关节约束,调用该个方法。定义createPointToPoint方法,创建2个球体物理网格对象,并设置点到点位置和方向固定约束,调用该个方法。定义controls方法,用于控制上面创建的PointConstraint、HingeConstraint、SliderConstraint和ConeTwistConstraint约束,定义添加、移除物理球体网格对象方法。调用createGround方法。定义render方法,进行三维场景的渲染。具体代码参考下面代码样例。
- 5、加入gui控制。加入stats监控器,监控帧数信息。
2. ☘️代码样例
<!DOCTYPE html>
<html>
<head>
<style>
body {
margin: 0;
overflow: hidden;
background-color: #000000;
}
</style>
<title>学习threejs,使用Physijs物理引擎,各种constraint约束限制</title>
<script type="text/javascript" src="../libs/three.js"></script>
<script type="text/javascript" src="../libs/stats.js"></script>
<script type="text/javascript" src="../libs/physi.js"></script>
<script type="text/javascript" src="../libs/dat.gui.js"></script>
<script type="text/javascript" src="../libs/chroma.js"></script>
<script type="text/javascript">
'use strict';
Physijs.scripts.worker = '../libs/physijs_worker.js';
Physijs.scripts.ammo = '../libs/ammo.js';
var scale = chroma.scale(['white', 'blue', 'red', 'yellow']);
var initScene, render, applyForce, setMousePosition, mouse_position,
ground_material, box_material,
projector, renderer, render_stats, physics_stats, scene, ground, light, camera, box, boxes = [];
initScene = function () {
projector = new THREE.Projector;
renderer = new THREE.WebGLRenderer({antialias: true});
renderer.setSize(window.innerWidth, window.innerHeight);
renderer.setClearColor(new THREE.Color(0x000000));
renderer.shadowMapEnabled = true;
document.getElementById('viewport').appendChild(renderer.domElement);
render_stats = new Stats();
render_stats.domElement.style.position = 'absolute';
render_stats.domElement.style.top = '1px';
render_stats.domElement.style.right = '1px';
render_stats.domElement.style.zIndex = 100;
document.getElementById('viewport').appendChild(render_stats.domElement);
scene = new Physijs.Scene({reportSize: 10, fixedTimeStep: 1 / 60});
scene.setGravity(new THREE.Vector3(0, -10, 0));
camera = new THREE.PerspectiveCamera(
35,
window.innerWidth / window.innerHeight,
1,
1000
);
camera.position.set(85, 65, 65);
camera.lookAt(new THREE.Vector3(0, 0, 0));
scene.add(camera);
// 创建THREE.SpotLight聚光灯光源light,设置light的位置和投影
light = new THREE.SpotLight(0xFFFFFF);
light.position.set(20, 50, 50);
light.castShadow = true;
light.shadowMapDebug = true;
light.shadowCameraNear = 10;
light.shadowCameraFar = 100;
// scene添加light
scene.add(light);
var meshes = [];
createGround();
// 创建立方体物理网格对象,并设置活页约束
var flipperLeftConstraint = createLeftFlipper();
var flipperRightConstraint = createRightFlipper();
// 创建立方体物理网格对象,并设置单轴线约束
var sliderBottomConstraint = createSliderBottom();
var sliderTopConstraint = createSliderTop();
// 创建1个球体物理网格对象、一个立方体物理网格对象,并设置球削式关节约束
var coneTwistConstraint = createConeTwist();
// 创建2个球体物理网格对象,并设置点到点位置和方向固定约束
var point2point = createPointToPoint(true);
var controls = new function () {
this.enableMotor = false;
this.acceleration = 2;
this.velocity = -10;
this.enableConeTwistMotor = false;
this.motorTargetX = 0;
this.motorTargetY = 0;
this.motorTargetZ = 0;
this.updateCone = function () {
if (controls.enableConeTwistMotor) {
coneTwistConstraint.enableMotor();
coneTwistConstraint.setMotorTarget(new THREE.Vector3(controls.motorTargetX, controls.motorTargetY, controls.motorTargetZ));
} else {
coneTwistConstraint.disableMotor();
}
};
this.updateMotor = function () {
if (controls.enableMotor) {
// 启用重力
flipperLeftConstraint.disableMotor();
flipperLeftConstraint.enableAngularMotor(controls.velocity, controls.acceleration);
flipperRightConstraint.disableMotor();
flipperRightConstraint.enableAngularMotor(-1 * controls.velocity, controls.acceleration);
} else {
flipperLeftConstraint.disableMotor();
flipperRightConstraint.disableMotor();
}
};
this.sliderLeft = function () {
sliderBottomConstraint.disableLinearMotor();
sliderBottomConstraint.enableLinearMotor(controls.velocity, controls.acceleration);
sliderTopConstraint.disableLinearMotor();
sliderTopConstraint.enableLinearMotor(controls.velocity, controls.acceleration);
};
this.sliderRight = function () {
sliderBottomConstraint.disableLinearMotor();
sliderBottomConstraint.enableLinearMotor(-1 * controls.velocity, controls.acceleration);
sliderTopConstraint.disableLinearMotor();
sliderTopConstraint.enableLinearMotor(-1 * controls.velocity, controls.acceleration);
};
this.clearMeshes = function () {
meshes.forEach(function (e) {
scene.remove(e);
});
meshes = [];
};
this.addSpheres = function () {
var colorSphere = scale(Math.random()).hex();
for (var i = 0; i < 5; i++) {
box = new Physijs.SphereMesh(
new THREE.SphereGeometry(2, 20),
Physijs.createMaterial(
new THREE.MeshPhongMaterial(
{
color: colorSphere,
opacity: 0.8,
transparent: true
controls.sphereFriction,
controls.sphereRestitution
)
, 0.1);
box.castShadow = true;
box.receiveShadow = true;
box.position.set(
Math.random() * 50 - 25,
20 + Math.random() * 5,
Math.random() * 5
);
meshes.push(box);
scene.add(box);
}
};
};
controls.updateMotor();
var gui = new dat.GUI();
gui.domElement.style.position = 'absolute';
gui.domElement.style.top = '20px';
gui.domElement.style.left = '20px';
var generalFolder = gui.addFolder('general');
generalFolder.add(controls, "acceleration", 0, 15).onChange(controls.updateMotor);
generalFolder.add(controls, "velocity", -10, 10).onChange(controls.updateMotor);
var hingeFolder = gui.addFolder('hinge');
hingeFolder.add(controls, "enableMotor").onChange(controls.updateMotor);
var sliderFolder = gui.addFolder('sliders');
sliderFolder.add(controls, "sliderLeft").onChange(controls.sliderLeft);
sliderFolder.add(controls, "sliderRight").onChange(controls.sliderRight);
var coneTwistFolder = gui.addFolder('coneTwist');
coneTwistFolder.add(controls, "enableConeTwistMotor").onChange(controls.updateCone);
coneTwistFolder.add(controls, "motorTargetX", -Math.PI / 2, Math.PI / 2).onChange(controls.updateCone);
coneTwistFolder.add(controls, "motorTargetY", -Math.PI / 2, Math.PI / 2).onChange(controls.updateCone);
coneTwistFolder.add(controls, "motorTargetZ", -Math.PI / 2, Math.PI / 2).onChange(controls.updateCone);
var spheresFolder = gui.addFolder('spheres');
spheresFolder.add(controls, "clearMeshes").onChange(controls.updateMotor);
spheresFolder.add(controls, "addSpheres").onChange(controls.updateMotor);
requestAnimationFrame(render);
scene.simulate();
};
function createGround() {
// Materials
ground_material = Physijs.createMaterial(
new THREE.MeshPhongMaterial(
{
// color: 0xaaaaaa,
map: THREE.ImageUtils.loadTexture('../assets/textures/general/floor-wood.jpg')
}),
.9, // high friction
.7 // low restitution
);
// Ground
ground = new Physijs.BoxMesh(
new THREE.BoxGeometry(60, 1, 65),
ground_material,
0
);
ground.receiveShadow = true;
var borderLeft = new Physijs.BoxMesh(
new THREE.BoxGeometry(2, 6, 65),
ground_material,
0
);
borderLeft.position.x = -31;
borderLeft.position.y = 2;
borderLeft.receiveShadow = true;
ground.add(borderLeft);
var borderRight = new Physijs.BoxMesh(new THREE.BoxGeometry(2, 6, 65),
ground_material,
0
);
borderRight.position.x = 31;
borderRight.position.y = 2;
borderRight.receiveShadow = true;
ground.add(borderRight);
var borderBottom = new Physijs.BoxMesh(
new THREE.BoxGeometry(64, 6, 2),
ground_material,
0
);
borderBottom.position.z = 32;
borderBottom.position.y = 1.5;
borderBottom.receiveShadow = true;
ground.add(borderBottom);
var borderTop = new Physijs.BoxMesh(
new THREE.BoxGeometry(64, 6, 2),
ground_material,
0
);
borderTop.position.z = -32;
borderTop.position.y = 2;
borderTop.receiveShadow = true;
ground.add(borderTop);
ground.receiveShadow = true;
scene.add(ground);
}
function createConeTwist() {
var baseMesh = new THREE.SphereGeometry(1);
var armMesh = new THREE.BoxGeometry(2, 12, 3);
var objectOne = new Physijs.BoxMesh(baseMesh, Physijs.createMaterial(
new THREE.MeshPhongMaterial({color: 0x4444ff, transparent: true, opacity: 0.7}), 0, 0), 0);
objectOne.position.z = 0;
objectOne.position.x = 20;
objectOne.position.y = 15.5;
objectOne.castShadow = true;
scene.add(objectOne);
var objectTwo = new Physijs.SphereMesh(armMesh, Physijs.createMaterial(
new THREE.MeshPhongMaterial({color: 0x4444ff, transparent: true, opacity: 0.7}), 0, 0), 10);
objectTwo.position.z = 0;
objectTwo.position.x = 20;
objectTwo.position.y = 7.5;
scene.add(objectTwo);
objectTwo.castShadow = true;
//position is the position of the axis, relative to the ref, based on the current position
var constraint = new Physijs.ConeTwistConstraint(objectOne, objectTwo, objectOne.position);
scene.addConstraint(constraint);
// set limit to quarter circle for each axis
constraint.setLimit(0.5 * Math.PI, 0.5 * Math.PI, 0.5 * Math.PI);
constraint.setMaxMotorImpulse(1);
constraint.setMotorTarget(new THREE.Vector3(0, 0, 0)); // desired rotation
return constraint;
}
function createPointToPoint() {
var obj1 = new THREE.SphereGeometry(2);
var obj2 = new THREE.SphereGeometry(2);
var objectOne = new Physijs.SphereMesh(obj1, Physijs.createMaterial(
new THREE.MeshPhongMaterial({color: 0xff4444, transparent: true, opacity: 0.7}), 0, 0));
objectOne.position.z = -18;
objectOne.position.x = -10;
objectOne.position.y = 2;
objectOne.castShadow = true;
scene.add(objectOne);
var objectTwo = new Physijs.SphereMesh(obj2, Physijs.createMaterial(
new THREE.MeshPhongMaterial({color: 0xff4444, transparent: true, opacity: 0.7}), 0, 0));
objectTwo.position.z = -5;
objectTwo.position.x = -20;
objectTwo.position.y = 2;
objectTwo.castShadow = true;
scene.add(objectTwo);
// if no position two, its fixed to a position. Else fixed to objectTwo and both will move
var constraint = new Physijs.PointConstraint(objectOne, objectTwo, objectTwo.position);
scene.addConstraint(constraint);
}
function createSliderBottom() {
var sliderCube = new THREE.BoxGeometry(12, 2, 2);
var sliderMesh = new Physijs.BoxMesh(sliderCube, Physijs.createMaterial(
new THREE.MeshPhongMaterial({color: 0x44ff44, opacity: 0.6, transparent: true}), 0, 0), 0.01);
sliderMesh.position.z = 20;
sliderMesh.position.x = 6;
sliderMesh.position.y = 1.5;
sliderMesh.castShadow = true;
scene.add(sliderMesh);
var constraint = new Physijs.SliderConstraint(sliderMesh, new THREE.Vector3(0, 0, 0), new THREE.Vector3(0, 1, 0));
scene.addConstraint(constraint);
constraint.setLimits(-10, 10, 0, 0);
constraint.setRestitution(0.1, 0.1);
return constraint;
}
function createSliderTop() {
var sliderSphere = new THREE.BoxGeometry(7, 2, 7);
var sliderMesh = new Physijs.BoxMesh(sliderSphere, Physijs.createMaterial(
new THREE.MeshPhongMaterial({color: 0x44ff44, transparent: true, opacity: 0.5}), 0, 0), 10);
sliderMesh.position.z = -15;
sliderMesh.position.x = -20;
sliderMesh.position.y = 1.5;
scene.add(sliderMesh);
sliderMesh.castShadow = true;
//position is the position of the axis, relative to the ref, based on the current position
var constraint = new Physijs.SliderConstraint(sliderMesh, new THREE.Vector3(-10, 0, 20), new THREE.Vector3(Math.PI / 2, 0, 0));
scene.addConstraint(constraint);
constraint.setLimits(-20, 10, 0.5, -0, 5);
constraint.setRestitution(0.2, 0.1);
return constraint;
}
function createLeftFlipper() {
var flipperLeft = new Physijs.BoxMesh(
new THREE.BoxGeometry(12, 2, 2), Physijs.createMaterial(new THREE.MeshPhongMaterial(
{opacity: 0.6, transparent: true}
)), 0.3
);
flipperLeft.position.x = -6;
flipperLeft.position.y = 2;
flipperLeft.position.z = 0;
flipperLeft.castShadow = true;
scene.add(flipperLeft);
var flipperLeftPivot = new Physijs.SphereMesh(
new THREE.BoxGeometry(1, 1, 1), ground_material, 0);
flipperLeftPivot.position.y = 1;
flipperLeftPivot.position.x = -15;
flipperLeftPivot.position.z = 0;
flipperLeftPivot.rotation.y = 1.4;
flipperLeftPivot.castShadow = true;
scene.add(flipperLeftPivot);
// 当观察轴时,使用的是物体二的轴。
// 只要物体二的轴与场景的轴一致,就不会有问题。
// 旋转和轴是相对于物体二的。如果位置等于立方体二的位置,那么效果就会如预期一样
var constraint = new Physijs.HingeConstraint(flipperLeft, flipperLeftPivot, flipperLeftPivot.position, new THREE.Vector3(0, 1, 0));
scene.addConstraint(constraint);
constraint.setLimits(
-2.2,
-0.6,
0.1,
0
);
return constraint;
}
function createRightFlipper() {
var flipperright = new Physijs.BoxMesh(
new THREE.BoxGeometry(12, 2, 2), Physijs.createMaterial(new THREE.MeshPhongMaterial(
{opacity: 0.6, transparent: true}
)), 0.3
);
flipperright.position.x = 8;
flipperright.position.y = 2;
flipperright.position.z = 0;
flipperright.castShadow = true;
scene.add(flipperright);
var flipperLeftPivot = new Physijs.SphereMesh(
new THREE.BoxGeometry(1, 1, 1), ground_material, 0);
flipperLeftPivot.position.y = 2;
flipperLeftPivot.position.x = 15;
flipperLeftPivot.position.z = 0;
flipperLeftPivot.rotation.y = 1.4;
flipperLeftPivot.castShadow = true;
scene.add(flipperLeftPivot);
// 当观察轴时,使用的是物体二的轴。
// 只要物体二的轴与场景的轴一致,就不会有问题。
// 旋转和轴是相对于物体二的。如果位置等于立方体二的位置,那么效果就会如预期一样
var constraint = new Physijs.HingeConstraint(flipperright, flipperLeftPivot, flipperLeftPivot.position, new THREE.Vector3(0, 1, 0));
// var constraint = new Physijs.HingeConstraint(cube1, new THREE.Vector3(0,0,0), new THREE.Vector3(0,1,0));
scene.addConstraint(constraint);
constraint.setLimits(
-2.2, // 从点对象1开始(向后)的最小运动角度(以弧度为单位)
-0.6, // 从点对象1开始(向前)的最大运动角度(以弧度为单位)
0.1, // 作为约束错误的一个因素应用,当约束被触发时,kantelpunt被移动的程度有多大
0 // 控制在极限时的弹跳(0.0表示无弹跳)
);
return constraint;
}
var direction = 1;
render = function () {
requestAnimationFrame(render);
renderer.render(scene, camera);
render_stats.update();
ground.__dirtyRotation = true;
scene.simulate(undefined, 2);
};
window.onload = initScene;
</script>
</head>
<body>
<div id="viewport"></div>
</body>
</html>
效果如下: