/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtCore module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/
#ifndef QEASINGCURVE_H
#define QEASINGCURVE_H
#include <QtCore/qglobal.h>
#include <QtCore/qobjectdefs.h>
#include <QtCore/qvector.h>
#if QT_DEPRECATED_SINCE(5, 0)
# include <QtCore/qlist.h>
# include <QtCore/qpoint.h>
#endif
QT_BEGIN_NAMESPACE
class QEasingCurvePrivate;
class QPointF;
class Q_CORE_EXPORT QEasingCurve
{
Q_GADGET
public:
enum Type {
Linear,
InQuad, OutQuad, InOutQuad, OutInQuad,
InCubic, OutCubic, InOutCubic, OutInCubic,
InQuart, OutQuart, InOutQuart, OutInQuart,
InQuint, OutQuint, InOutQuint, OutInQuint,
InSine, OutSine, InOutSine, OutInSine,
InExpo, OutExpo, InOutExpo, OutInExpo,
InCirc, OutCirc, InOutCirc, OutInCirc,
InElastic, OutElastic, InOutElastic, OutInElastic,
InBack, OutBack, InOutBack, OutInBack,
InBounce, OutBounce, InOutBounce, OutInBounce,
InCurve, OutCurve, SineCurve, CosineCurve,
BezierSpline, TCBSpline, Custom, NCurveTypes
};
Q_ENUM(Type)
QEasingCurve(Type type = Linear);
QEasingCurve(const QEasingCurve &other);
~QEasingCurve();
QEasingCurve &operator=(const QEasingCurve &other)
{ if ( this != &other ) { QEasingCurve copy(other); swap(copy); } return *this; }
#ifdef Q_COMPILER_RVALUE_REFS
QEasingCurve(QEasingCurve &&other) Q_DECL_NOTHROW : d_ptr(other.d_ptr) { other.d_ptr = nullptr; }
QEasingCurve &operator=(QEasingCurve &&other) Q_DECL_NOTHROW
{ qSwap(d_ptr, other.d_ptr); return *this; }
#endif
void swap(QEasingCurve &other) Q_DECL_NOTHROW { qSwap(d_ptr, other.d_ptr); }
bool operator==(const QEasingCurve &other) const;
inline bool operator!=(const QEasingCurve &other) const
{ return !(this->operator==(other)); }
qreal amplitude() const;
void setAmplitude(qreal amplitude);
qreal period() const;
void setPeriod(qreal period);
qreal overshoot() const;
void setOvershoot(qreal overshoot);
void addCubicBezierSegment(const QPointF & c1, const QPointF & c2, const QPointF & endPoint);
void addTCBSegment(const QPointF &nextPoint, qreal t, qreal c, qreal b);
QVector<QPointF> toCubicSpline() const;
#if QT_DEPRECATED_SINCE(5, 0)
QT_DEPRECATED QList<QPointF> cubicBezierSpline() const { return toCubicSpline().toList(); }
#endif
Type type() const;
void setType(Type type);
typedef qreal (*EasingFunction)(qreal progress);
void setCustomType(EasingFunction func);
EasingFunction customType() const;
qreal valueForProgress(qreal progress) const;
private:
QEasingCurvePrivate *d_ptr;
#ifndef QT_NO_DEBUG_STREAM
friend Q_CORE_EXPORT QDebug operator<<(QDebug debug, const QEasingCurve &item);
#endif
#ifndef QT_NO_DATASTREAM
friend Q_CORE_EXPORT QDataStream &operator<<(QDataStream &, const QEasingCurve&);
friend Q_CORE_EXPORT QDataStream &operator>>(QDataStream &, QEasingCurve &);
#endif
};
Q_DECLARE_SHARED(QEasingCurve)
#ifndef QT_NO_DEBUG_STREAM
Q_CORE_EXPORT QDebug operator<<(QDebug debug, const QEasingCurve &item);
#endif
#ifndef QT_NO_DATASTREAM
Q_CORE_EXPORT QDataStream &operator<<(QDataStream &, const QEasingCurve&);
Q_CORE_EXPORT QDataStream &operator>>(QDataStream &, QEasingCurve &);
#endif
QT_END_NAMESPACE
#endif
Qt缓动曲线详解
Qt的缓动曲线(QEasingCurve)用于控制动画的速度变化,让动画更自然。以下是主要类型及其效果:
基础曲线类型
Linear - 线性变化,匀速运动,无加速减速
- 效果:机械感强,缺乏自然感
Quad族 - 二次方曲线
- InQuad: 开始慢,逐渐加速
- OutQuad: 开始快,逐渐减速
- InOutQuad: 开始慢,中间快,结束慢
- OutInQuad: 开始快,中间慢,结束快
Cubic/Quart/Quint族 - 三/四/五次方曲线
- 变化比Quad更剧烈,加减速更明显
Sine族 - 基于正弦函数
- 变化平滑,有轻微的加减速
- 较为自然,模拟自然运动
Expo族 - 指数曲线
- 变化极为剧烈,开始或结束时速度变化非常明显
Circ族 - 圆形曲线
- 基于圆形方程,变化圆滑
特殊效果曲线
Elastic族 - 弹性曲线
- OutElastic: 结束时有弹跳效果,像橡皮筋
- 特点:物体似乎越过目标后反弹回来
Back族 - 回弹曲线
- 运动略微超出目标后返回
- 比Elastic更克制,弹性更小
Bounce族 - 弹跳曲线
- 模拟物体弹跳效果
- 特点:像球落地后反弹几次
对于图标缩放动画的最佳选择
对于图标缩小后放大并打开界面的效果,我推荐以下组合:
缩小阶段: OutQuad 或 OutCubic
- 快速开始缩小,然后平滑减速
- 给用户即时反馈,表明点击已被识别
放大阶段: OutElastic 或 OutBack
- OutElastic: 添加轻微的弹性效果,图标会略微超过原始大小再恢复
- 效果更自然,模拟真实物理世界中的弹性物体
这种组合模拟现实中的"按压弹起"物理效果:
- 按下时图标迅速缩小(OutQuad)
- 释放时有弹性回弹(OutElastic)
最佳推荐: 缩小用OutQuad + 放大用OutElastic,这也是我们在代码中已经使用的组合,它提供了:
- 良好的视觉反馈
- 自然的物理感
- 流畅而不过分夸张的动画效果
如果想更保守一些,可以用OutBack替代OutElastic获得更克制的弹性效果。
InSine
、OutSine
、InOutSine
和 OutInSine
是常见的缓动函数(Easing Functions),它们用于控制动画或其他动态效果的速度变化。这些函数基于正弦函数的特性,提供了不同的加速和减速效果。以下是它们的区别和特点:
1. InSine(正弦进入)
- 特点:开始时速度较慢,逐渐加速到结束。
- 数学表达:
f(t) = 1 - cos(t * π / 2)
,其中t
是时间参数,范围在[0, 1]
。 - 应用场景:适合用于需要缓慢启动的动画,例如一个物体从静止开始加速移动。
- 效果示例:物体开始时几乎不动,然后逐渐加速到最终速度。
2. OutSine(正弦退出)
- 特点:开始时速度较快,逐渐减速到结束。
- 数学表达:
f(t) = sin(t * π / 2)
,其中t
是时间参数,范围在[0, 1]
。 - 应用场景:适合用于需要逐渐停止的动画,例如一个物体快速移动后逐渐减速停下。
- 效果示例:物体开始时快速移动,然后逐渐减速到停止。
3. InOutSine(正弦进出)
- 特点:开始时速度较慢,中间加速,最后再减速到结束。
- 数学表达:
f(t) = -0.5 * (cos(π * t) - 1)
,其中t
是时间参数,范围在[0, 1]
。 - 应用场景:适合用于需要平滑过渡的动画,例如一个物体先加速后减速,整体效果更加自然。
- 效果示例:物体开始时缓慢移动,中间加速,最后再减速到停止。
4. OutInSine(正弦出进)
- 特点:先快速减速到中间点,然后再快速加速到结束。
- 数学表达:
f(t) = t < 0.5 ? sin((t * 2) * π / 2) * 0.5 : 0.5 + (1 - cos((t * 2 - 1) * π / 2)) * 0.5
,其中t
是时间参数,范围在[0, 1]
。 - 应用场景:适合用于需要先减速后加速的动画,例如一个物体先快速减速,然后快速加速离开。
- 效果示例:物体开始时快速减速到中间位置,然后快速加速到最终位置。
图形对比
以下是这些缓动函数的图形对比(假设时间 t
从 0 到 1):
- InSine:从 0 开始,缓慢上升,到 1 时达到最大值。
- OutSine:从 0 开始,快速上升,到 1 时逐渐平缓。
- InOutSine:从 0 开始,缓慢上升,中间加速,最后再缓慢上升到 1。
- OutInSine:从 0 开始,快速上升到中间位置,然后快速下降到 0.5,再快速上升到 1。
总结
- InSine:适合需要缓慢启动的动画。
- OutSine:适合需要逐渐停止的动画。
- InOutSine:适合需要平滑过渡的动画。
- OutInSine:适合需要先减速后加速的动画。
这些缓动函数在动画设计中非常常用,可以根据具体需求选择合适的函数来实现理想的动画效果。