Starrocks的CBO基石--统计信息的来源 StatisticAutoCollector

发布于:2025-05-22 ⋅ 阅读:(14) ⋅ 点赞:(0)

背景

本文来从底层代码的实现来分析一下Starrocks怎么获取统计信息,这些统计信息在后续基于CBO的代价计算的时候有着重要的作用
本文基于Starrrocks 3.3.5

结论

Starrocks的统计信息的收集是通过周期性的运行一系列的SQL(以分区为维度,如果不是分区表,其实也有个默认的分区,也就是单个分区),之后插入到_statistics_.column_statistics表中,并会存储在 GlobalStateMgr.CachedStatisticStorage,后续所有的统计信息的获取也是通过这里获取的

分析

直接到StatisticAutoCollector类

    public StatisticAutoCollector() {
        super("AutoStatistic", Config.statistic_collect_interval_sec * 1000);
    }

这里默认的调度周期是 statistic_collect_interval_sec (也就是5分钟)

    @Override
    protected void runAfterCatalogReady() {
        // update interval
        if (getInterval() != Config.statistic_collect_interval_sec * 1000) {
            setInterval(Config.statistic_collect_interval_sec * 1000);
        }

        if (!Config.enable_statistic_collect || FeConstants.runningUnitTest) {
            return;
        }

        if (!checkoutAnalyzeTime(LocalTime.now(TimeUtils.getTimeZone().toZoneId()))) {
            return;
        }

        // check statistic table state
        if (!StatisticUtils.checkStatisticTableStateNormal()) {
            return;
        }

        initDefaultJob();

        runJobs();
    }

  • 强制 调度周期设置为5分钟
  • 进行 调度时间的检查,默认是一天,也可以设置开始和结束时间,statistic_auto_analyze_start_time,statistic_auto_analyze_end_time
  • 还可以设置enable_statistic_collect为false,如果不想进行统计信息的采集的话
  • initDefaultJob 初始化统计信息采集任务,默认是 enable_collect_full_statistic 为 true,也就是全量采集
  • runJobs 运行采集任务,也就是最核心的阶段
         protected List<StatisticsCollectJob> runJobs() {
    
          ...
          Set<Long> analyzeTableSet = Sets.newHashSet();
    
          for (NativeAnalyzeJob nativeAnalyzeJob : allNativeAnalyzeJobs) {
              List<StatisticsCollectJob> jobs = nativeAnalyzeJob.instantiateJobs();
              result.addAll(jobs);
              ConnectContext statsConnectCtx = StatisticUtils.buildConnectContext();
              statsConnectCtx.setThreadLocalInfo();
              nativeAnalyzeJob.run(statsConnectCtx, STATISTIC_EXECUTOR, jobs);
    
              for (StatisticsCollectJob job : jobs) {
                  if (job.isAnalyzeTable()) {
                      analyzeTableSet.add(job.getTable().getId());
                  }
              }
          }
          LOG.info("auto collect statistic on analyze job[{}] end", analyzeJobIds);
    
          if (Config.enable_collect_full_statistic) {
              LOG.info("auto collect full statistic on all databases start");
              List<StatisticsCollectJob> allJobs =
                      StatisticsCollectJobFactory.buildStatisticsCollectJob(createDefaultJobAnalyzeAll());
              for (StatisticsCollectJob statsJob : allJobs) {
                  // user-created analyze job has a higher priority
                  if (statsJob.isAnalyzeTable() && analyzeTableSet.contains(statsJob.getTable().getId())) {
                      continue;
                  }
    
                  result.add(statsJob);
                  AnalyzeStatus analyzeStatus = new NativeAnalyzeStatus(GlobalStateMgr.getCurrentState().getNextId(),
                          statsJob.getDb().getId(), statsJob.getTable().getId(), statsJob.getColumnNames(),
                          statsJob.getType(), statsJob.getScheduleType(), statsJob.getProperties(), LocalDateTime.now());
                  analyzeStatus.setStatus(StatsConstants.ScheduleStatus.FAILED);
                  GlobalStateMgr.getCurrentState().getAnalyzeMgr().addAnalyzeStatus(analyzeStatus);
    
                  ConnectContext statsConnectCtx = StatisticUtils.buildConnectContext();
                  statsConnectCtx.setThreadLocalInfo();
                  STATISTIC_EXECUTOR.collectStatistics(statsConnectCtx, statsJob, analyzeStatus, true);
              }
              LOG.info("auto collect full statistic on all databases end");
          }
    
          ...
    
          return result;
      }
    
    
    • nativeAnalyzeJob.instantiateJobs 构造统计信息
      这里调用了StatisticsCollectJobFactory.buildStatisticsCollectJob 方法,
      首先这里有个配置 statistic_exclude_pattern可以排除不需要进行统计的表(以db.table格式)
      其次是会根据当前所谓的健康度(也就是分区更新的时间比例)和statistic_auto_collect_ratio大小比较,如果健康度小于该值,则调用createFullStatsJob方法,创建全量统计任务。
      这里 主要用 buildStatisticsCollectJob 构造一个FullStatisticsCollectJob类型的job
    • nativeAnalyzeJob.run 运行统计信息任务
      这个方法会调用StatisticExecutor.collectStatistics,最终会调用FullStatisticsCollectJob.collect方法
       int parallelism = Math.max(1, context.getSessionVariable().getStatisticCollectParallelism());
         List<List<String>> collectSQLList = buildCollectSQLList(parallelism);
         long totalCollectSQL = collectSQLList.size();
         ...
         Exception lastFailure = null;
         for (List<String> sqlUnion : collectSQLList) {
             if (sqlUnion.size() < parallelism) {
                 context.getSessionVariable().setPipelineDop(parallelism / sqlUnion.size());
             } else {
                 context.getSessionVariable().setPipelineDop(1);
             }
      
             String sql = Joiner.on(" UNION ALL ").join(sqlUnion);
      
             try {
                 collectStatisticSync(sql, context);
             } catch (Exception e) {
                 ...
             }
             finishedSQLNum++;
             analyzeStatus.setProgress(finishedSQLNum * 100 / totalCollectSQL);
             GlobalStateMgr.getCurrentState().getAnalyzeMgr().addAnalyzeStatus(analyzeStatus);
         }
         ...
         flushInsertStatisticsData(context, true);
      
      
      • 首先设置一个 运行sql的并行度statistic_collect_parallel默认是1,这个意思就是这个统计sql会分多少次运行
      • buildCollectSQLList 这里会构建具体运行统计信息的SQL,这会具体的分区级别
      • collectStatisticSync 这里会执行具体的SQL
        SQL如下:
         SELECT cast(4 as INT) ,
            cast($partitionId as BIGINT) ,
            '$columnNameStr' ,
            cast(COUNT(1) as BIGINT) ,
            cast($dataSize as BIGINT) ,
            hex(hll_serialize(IFNULL(hll_raw(column_key), hll_empty()))),
            cast( (COUNT(1) - COUNT(column_key)) as BIGINT) ,
            MAX(column_key) ,
            MIN(column_key) 
            FROM (select $quoteColumnName as column_key from `$dbName`.`$tableName` partition `$partitionName`) tt
        
      • flushInsertStatisticsData 这里会把执行的结果数据存储到_statistics_.column_statistics
    • analyzeMgr.refreshBasicStatisticsCache 这个主要的作用是 更新CachedStatisticStorage 里的统计信息
      主要通过 refreshTableStatistic 和 getColumnStatistics
      这两个方法分别会调用 TableStatsCacheLoader 和 ColumnBasicStatsCacheLoader 去执行SQL从而获取对应的统计信息,调用的SQL如下:
        select cast(3 as INT), partition_id, any_value(row_count)
                      FROM  column_statistics
                      WHERE table_id = $tableId  and partition_id =  $partitionId
                      GROUP BY partition_id;
      
        SELECT cast( 1  as INT), $updateTime, db_id, table_id, column_name,
                     sum(row_count), cast(sum(data_size) as bigint), hll_union_agg(ndv), sum(null_count), 
                     cast(max(cast(max as $type)) as string), cast(min(cast(min as $type)) as string)
                     FROM   column_statistics
                     WHERE table_id = $table_id and column_name in (xxx,xxx,xxx)
                     GROUP BY db_id, table_id, column_name;
      

其他

  • StatisticAutoCollector 是通过周期性的任务来进行统计信息的收集
  • 手动的收集
    ANALYZE TABLE
    如命令:
    ANALYZE [FULL|SAMPLE] TABLE tbl_name (col_name [,col_name])
    [WITH SYNC | ASYNC MODE]
    PROPERTIES (property [,property])
    
  • 手动触发自动收集
    CREATE ANALYZE
    如命令:
    CREATE ANALYZE [FULL|SAMPLE] TABLE tbl_name (col_name [,col_name])
    PROPERTIES (property [,property])
    

以上都会触发统计信息的收集。


网站公告

今日签到

点亮在社区的每一天
去签到