用torch写一个简单网络训练FashionMNIST数据集参考torch官网

发布于:2025-05-24 ⋅ 阅读:(48) ⋅ 点赞:(0)
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor(),
)
test_data = datasets.FashionMNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor(),
)
batch_size = 64
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
# 定义模型和损失函数
model = torch.nn.Linear(784, 10)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
loss_fn = nn.CrossEntropyLoss()

optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=0.0001)
class NeuralNetwork(nn.Module):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28 * 28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10),
        )
    def forward(self, x):
        x = self.flatten(x)
        log = self.linear_relu_stack(x)
        return log
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    model.train()
    for batch, (X, y) in enumerate(dataloader):
        X, y = X.to(device), y.to(device)
        X = X.flatten(start_dim=1)
        # Compute prediction error
        pred = model(X)
        loss = loss_fn(pred, y)

        # Backpropagation
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

        if batch % 100 == 0:
            loss, current = loss.item(), (batch + 1) * len(X)
            print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")

def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    model.eval()
    test_loss, correct = 0, 0
    with torch.no_grad():
        for X, y in dataloader:
            X, y = X.to(device), y.to(device)
            X = X.flatten(start_dim=1)
            pred = model(X)
            test_loss += loss_fn(pred, y).item()
            correct += (pred.argmax(1) == y).type(torch.float).sum().item()
    test_loss /= num_batches
    correct /= size
    print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")


epochs = 5
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(dataloader=train_dataloader, model=model, loss_fn=loss_fn, optimizer=optimizer)
    test(dataloader=test_dataloader, model=model, loss_fn=loss_fn)
print("Done!")



# 加载和保存模型
model = NeuralNetwork().to(device)
torch.save(model.state_dict(), "model.pth")
print("Saved PyTorch Model State to model.pth")
classes = [
    "T-shirt/top",
    "Trouser",
    "Pullover",
    "Dress",
    "Coat",
    "Sandal",
    "Shirt",
    "Sneaker",
    "Bag",
    "Ankle boot",
]

model.eval()
x, y = test_data[0][0], test_data[0][1]
with torch.no_grad():
    x = x.to(device)
    pred = model(x)
    predicted, actual = classes[pred[0].argmax(0)], classes[y]
    print(f'Predicted: "{predicted}", Actual: "{actual}"')

官网地址:Redirecting...


网站公告

今日签到

点亮在社区的每一天
去签到