Python打卡训练营学习记录Day36

发布于:2025-05-25 ⋅ 阅读:(19) ⋅ 点赞:(0)

仔细回顾一下神经网络到目前的内容,没跟上进度的同学补一下进度。

  • 作业:对之前的信贷项目,利用神经网络训练下,尝试用到目前的知识点让代码更加规范和美观。
  • import pandas as pd    #用于数据处理和分析,可处理表格数据。
    import numpy as np     #用于数值计算,提供了高效的数组操作。
    import matplotlib.pyplot as plt    #用于绘制各种类型的图表
    import seaborn as sns   #基于matplotlib的高级绘图库,能绘制更美观的统计图形。
    import warnings
    warnings.filterwarnings("ignore")
     
    import torch
    import torch.nn as nn
    import torch.optim as optim
    from sklearn.datasets import load_iris
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import MinMaxScaler
    import time
    from tqdm import tqdm  # 导入tqdm库用于进度条显示
     
     # 设置中文字体(解决中文显示问题)
    plt.rcParams['font.sans-serif'] = ['SimHei']  # Windows系统常用黑体字体
    plt.rcParams['axes.unicode_minus'] = False    # 正常显示负号
    data = pd.read_csv('data.csv')    #读取数据
     
    # 设置GPU设备
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print(f"使用设备: {device}")
     
    # 先筛选字符串变量 
    discrete_features = data.select_dtypes(include=['object']).columns.tolist()
    # Home Ownership 标签编码
    home_ownership_mapping = {
        'Own Home': 1,
        'Rent': 2,
        'Have Mortgage': 3,
        'Home Mortgage': 4
    }
    data['Home Ownership'] = data['Home Ownership'].map(home_ownership_mapping)
     
    # Years in current job 标签编码
    years_in_job_mapping = {
        '< 1 year': 1,
        '1 year': 2,
        '2 years': 3,
        '3 years': 4,
        '4 years': 5,
        '5 years': 6,
        '6 years': 7,
        '7 years': 8,
        '8 years': 9,
        '9 years': 10,
        '10+ years': 11
    }
    data['Years in current job'] = data['Years in current job'].map(years_in_job_mapping)
     
    # Purpose 独热编码,记得需要将bool类型转换为数值
    data = pd.get_dummies(data, columns=['Purpose'])
    data2 = pd.read_csv("data.csv") # 重新读取数据,用来做列名对比
    list_final = [] # 新建一个空列表,用于存放独热编码后新增的特征名
    for i in data.columns:
        if i not in data2.columns:
           list_final.append(i) # 这里打印出来的就是独热编码后的特征名
    for i in list_final:
        data[i] = data[i].astype(int) # 这里的i就是独热编码后的特征名
     
    # Term 0 - 1 映射
    term_mapping = {
        'Short Term': 0,
        'Long Term': 1
    }
    data['Term'] = data['Term'].map(term_mapping)
    data.rename(columns={'Term': 'Long Term'}, inplace=True) # 重命名列
    continuous_features = data.select_dtypes(include=['int64', 'float64']).columns.tolist()  #把筛选出来的列名转换成列表
     
     # 连续特征用中位数补全
    for feature in continuous_features:     
        mode_value = data[feature].mode()[0]            #获取该列的众数。
        data[feature].fillna(mode_value, inplace=True)          #用众数填充该列的缺失值,inplace=True表示直接在原数据上修改。
     
    # 最开始也说了 很多调参函数自带交叉验证,甚至是必选的参数,你如果想要不交叉反而实现起来会麻烦很多
    # 所以这里我们还是只划分一次数据集
    from sklearn.model_selection import train_test_split
    X = data.drop(['Credit Default'], axis=1)  # 特征,axis=1表示按列删除
    y = data['Credit Default'] # 标签
    # 按照8:2划分训练集和测试集
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  # 80%训练集,20%测试集
    # 划分训练集和测试集
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
     
    # 归一化数据
    scaler = MinMaxScaler()
    X_train = scaler.fit_transform(X_train)
    X_test = scaler.transform(X_test)
    X_train = torch.FloatTensor(X_train).to(device)
    y_train = torch.LongTensor(y_train.values).to(device) 
    X_test = torch.FloatTensor(X_test).to(device)
    y_test = torch.LongTensor(y_test.values).to(device) 
     
    batch_size = 64
    train_dataset = torch.utils.data.TensorDataset(X_train, y_train)
    train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
     
    input_size=X_train.shape[1]
    class MLP(nn.Module):
        def __init__(self, input_size):  # 添加input_size参数
            super(MLP, self).__init__()
            self.fc1 = nn.Linear(input_size, 64)  # 输入维度为实际特征数
            self.relu = nn.ReLU()
            self.dropout = nn.Dropout(0.2)  # 新增dropout层防止过拟合
            self.fc2 = nn.Linear(64, 2)  # 输出改为2个神经元(二分类问题)
        
        def forward(self, x):
            out = self.fc1(x)
            out = self.relu(out)
            out = self.dropout(out)
            out = self.fc2(out)
            return out
     
    # 实例化模型
    model = MLP(input_size=X_train.shape[1]).to(device) 
     
    # 分类问题使用交叉熵损失函数
    criterion = nn.CrossEntropyLoss()
     
    optimizer = optim.Adam(model.parameters(), lr=0.001)  # 改为Adam优化器
    criterion = nn.CrossEntropyLoss()
     
    num_epochs = 20000
    best_loss = float('inf')
    patience = 5       
    min_delta = 0.001  
    counter = 0        
     
    # 添加记录列表
    loss_history = []
    epoch_list = []
     
    start_time = time.time()
    with tqdm(total=num_epochs, desc="训练进度", unit="epoch") as pbar:
        for epoch in range(num_epochs):
            model.train()
            epoch_loss = 0.0
            
            # 训练步骤
            for inputs, labels in train_loader:
                optimizer.zero_grad()
                outputs = model(inputs)
                loss = criterion(outputs, labels)
                loss.backward()
                optimizer.step()
                epoch_loss += loss.item() * inputs.size(0)
            
            # 计算平均epoch损失
            avg_loss = epoch_loss / len(train_loader.dataset)
            loss_history.append(avg_loss)     
            epoch_list.append(epoch+1) 
            
            # 更新进度条
            pbar.set_postfix({'Train Loss': f'{avg_loss:.4f}'})
            pbar.update(1)
            
            # 早停逻辑(基于训练损失)
            if avg_loss < best_loss - min_delta:
                best_loss = avg_loss
                counter = 0
                best_weights = model.state_dict().copy()  # 保存最佳权重
            else:
                counter += 1
                if counter >= patience:
                    print(f"\n早停触发!第 {epoch+1} 个epoch后停止")
                    break
     
    # 加载最佳模型权重
    model.load_state_dict(best_weights)
     
    time_all = time.time() - start_time
    print(f'训练时间: {time_all:.2f}秒')
     
    # 可视化损失曲线
    plt.figure(figsize=(10, 6))
    plt.plot(epoch_list, loss_history)
    plt.xlabel('Epoch')
    plt.ylabel('Loss')
    plt.title('Training Loss over Epochs')
    plt.grid(True)
    plt.show()
     
    # 评估模型
    model.eval() # 设置模型为评估模式
    with torch.no_grad(): # torch.no_grad()的作用是禁用梯度计算,可以提高模型推理速度
        outputs = model(X_test)  # 对测试数据进行前向传播,获得预测结果
        _, predicted = torch.max(outputs, 1) # torch.max(outputs, 1)返回每行的最大值和对应的索引
     
        correct = (predicted == y_test).sum().item() # 计算预测正确的样本数
        accuracy = correct / y_test.size(0)
        print(f'测试集准确率: {accuracy * 100:.2f}%')

@浙大疏锦行 


网站公告

今日签到

点亮在社区的每一天
去签到