矩阵的偏导数

发布于:2025-06-04 ⋅ 阅读:(25) ⋅ 点赞:(0)

X = ( x i j ) m × n X = (x_{ij})_{m \times n} X=(xij)m×n,函数 f ( X ) = f ( x 11 , x 12 , … , x 1 n , x 21 , … , x m n ) f(X) = f(x_{11}, x_{12}, \ldots, x_{1n}, x_{21}, \ldots, x_{mn}) f(X)=f(x11,x12,,x1n,x21,,xmn) 是一个 m × n m \times n m×n 元的多元函数,且偏导数

∂ f ∂ x i j ( i = 1 , 2 , … , m ,   j = 1 , 2 , … , n ) \frac{\partial f}{\partial x_{ij}} \quad (i=1,2,\ldots,m,\ j=1,2,\ldots,n) xijf(i=1,2,,m, j=1,2,,n)

都存在。定义 f ( X ) f(X) f(X) 对矩阵 X X X 的导数为:

d f ( X ) d X = ( ∂ f ∂ x i j ) m × n = [ ∂ f ∂ x 11 ⋯ ∂ f ∂ x 1 n ⋮ ⋱ ⋮ ∂ f ∂ x m 1 ⋯ ∂ f ∂ x m n ] \frac{df(X)}{dX} = \left( \frac{\partial f}{\partial x_{ij}} \right)_{m \times n} =\begin{bmatrix} \frac{\partial f}{\partial x_{11}} & \cdots & \frac{\partial f}{\partial x_{1n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial x_{m1}} & \cdots & \frac{\partial f}{\partial x_{mn}} \end{bmatrix} dXdf(X)=(xijf)m×n= x11fxm1fx1nfxmnf

(1) 设 x = ( ξ 1 , ξ 2 , ⋯   , ξ n ) ⊤ \mathbf{x} = (\xi_1, \xi_2, \cdots, \xi_n)^\top x=(ξ1,ξ2,,ξn) n n n 元函数 f ( x ) f(\mathbf{x}) f(x),求 d f d x ⊤ \frac{df}{d\mathbf{x}^\top} dxdf d f d x \frac{df}{d\mathbf{x}} dxdf d 2 f d x 2 \frac{d^2f}{d\mathbf{x}^2} dx2d2f

d f d x ⊤ = ( ∂ f ∂ ξ 1 , ∂ f ∂ ξ 2 , ⋯   , ∂ f ∂ ξ n ) \frac{df}{d\mathbf{x}^\top} = \begin{pmatrix} \frac{\partial f}{\partial \xi_1}, \frac{\partial f}{\partial \xi_2},\cdots, \frac{\partial f}{\partial \xi_n} \end{pmatrix} dxdf=(ξ1f,ξ2f,,ξnf)

∇ f ( x ) = d f d x = ( ∂ f ∂ ξ 1 ∂ f ∂ ξ 2 ⋮ ∂ f ∂ ξ n ) ,这就是梯度。 \nabla f(\mathbf{x}) = \frac{df}{d\mathbf{x}} = \begin{pmatrix} \frac{\partial f}{\partial \xi_1} \\ \frac{\partial f}{\partial \xi_2} \\ \vdots \\ \frac{\partial f}{\partial \xi_n} \end{pmatrix} \text{,这就是梯度。} f(x)=dxdf= ξ1fξ2fξnf ,这就是梯度。

H ( x ) = ∇ 2 f ( x ) = ∂ 2 f ∂ x ∂ x ⊤ = [ ∂ 2 f ∂ ξ 1 2 ∂ 2 f ∂ ξ 1 ∂ ξ 2 ⋯ ∂ 2 f ∂ ξ 1 ∂ ξ n ∂ 2 f ∂ ξ 2 ∂ ξ 1 ∂ 2 f ∂ ξ 2 2 ⋯ ∂ 2 f ∂ ξ 2 ∂ ξ n ⋮ ⋮ ⋱ ⋮ ∂ 2 f ∂ ξ n ∂ ξ 1 ∂ 2 f ∂ ξ n ∂ ξ 2 ⋯ ∂ 2 f ∂ ξ n 2 ] , 这就是Hessian 矩阵,它是对称的。 H(\mathbf{x}) = \nabla^2 f(\mathbf{x}) = \frac{\partial^2 f}{\partial \mathbf{x} \partial \mathbf{x}^\top} = \begin{bmatrix} \frac{\partial^2 f}{\partial \xi_1^2} & \frac{\partial^2 f}{\partial \xi_1 \partial \xi_2} & \cdots & \frac{\partial^2 f}{\partial \xi_1 \partial \xi_n} \\ \frac{\partial^2 f}{\partial \xi_2 \partial \xi_1} & \frac{\partial^2 f}{\partial \xi_2^2} & \cdots & \frac{\partial^2 f}{\par


网站公告

今日签到

点亮在社区的每一天
去签到