LangChain is primarily a Python and JavaScript/TypeScript project, but there are Java alternatives and integrations that allow similar capabilities.
If you're looking for LangChain-like functionality in Java, here’s a practical overview:
🔧 1. Use LangChain4j (LangChain for Java)
LangChain4j is the official LangChain-style library for Java, maintained by the LangChain ecosystem.
✨ Features:
Prompt templating
Memory
LLM integrations (OpenAI, Azure, Hugging Face, Ollama, etc.)
Tools and Chains
Retrieval Augmented Generation (RAG)
✅ Example (LangChain4j)
1. Add Maven Dependency
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j</artifactId>
<version>0.26.0</version>
</dependency>
Versions change frequently. Always check: Maven Central Repository Search
2. Basic Chat Example (OpenAI)
import dev.langchain4j.model.openai.OpenAiChatModel;
import dev.langchain4j.service.SystemMessage;
import dev.langchain4j.service.UserMessage;
import dev.langchain4j.service.AiService;
public class LangChain4jExample {
interface Assistant {
@SystemMessage("You are a helpful assistant.")
String chat(@UserMessage String message);
}
public static void main(String[] args) {
var model = OpenAiChatModel.withApiKey("YOUR_OPENAI_API_KEY");
Assistant assistant = AiService.create(Assistant.class, model);
String response = assistant.chat("What is the capital of France?");
System.out.println(response);
}
}
3. File or Document Q&A (RAG)
You can load PDF/text/CSV files and use embeddings + vector stores (like FAISS, Chroma, or Redis) for semantic search.
LangChain4j supports:
Embedding models (OpenAI, HuggingFace)
Vector stores (in-memory, Redis, Qdrant)
🚀 Summary
Feature | Support in Java |
---|---|
Prompt templating | ✅ LangChain4j |
Chains and tools | ✅ LangChain4j |
Memory support | ✅ LangChain4j |
Vector store + RAG | ✅ LangChain4j |
OpenAI/LLM support | ✅ LangChain4j |
Ollama/Local model | ✅ via REST |