打卡day52

发布于:2025-06-13 ⋅ 阅读:(21) ⋅ 点赞:(0)

简单cnn 借助调参指南进一步提高精度

基础CNN模型代码

import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.utils import to_categorical

# 加载数据
(train_images, train_labels), (test_images, test_labels) = cifar10.load_data()

# 数据预处理
train_images = train_images.astype('float32') / 255
test_images = test_images.astype('float32') / 255
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)

# 基础CNN模型
model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.Flatten(),
    layers.Dense(64, activation='relu'),
    layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss='categorical_crossentropy',
              metrics=['accuracy'])

history = model.fit(train_images, train_labels, 
                    epochs=10, 
                    batch_size=64,
                    validation_data=(test_images, test_labels))

改进方法

增加模型复杂度

model = models.Sequential([
    layers.Conv2D(64, (3, 3), activation='relu', input_shape=(32, 32, 3), padding='same'),
    layers.BatchNormalization(),
    layers.Conv2D(64, (3, 3), activation='relu', padding='same'),
    layers.BatchNormalization(),
    layers.MaxPooling2D((2, 2)),
    layers.Dropout(0.25),
    
    layers.Conv2D(128, (3, 3), activation='relu', padding='same'),
    layers.BatchNormalization(),
    layers.Conv2D(128, (3, 3), activation='relu', padding='same'),
    layers.BatchNormalization(),
    layers.MaxPooling2D((2, 2)),
    layers.Dropout(0.25),
    
    layers.Conv2D(256, (3, 3), activation='relu', padding='same'),
    layers.BatchNormalization(),
    layers.Conv2D(256, (3, 3), activation='relu', padding='same'),
    layers.BatchNormalization(),
    layers.MaxPooling2D((2, 2)),
    layers.Dropout(0.25),
    
    layers.Flatten(),
    layers.Dense(512, activation='relu'),
    layers.BatchNormalization(),
    layers.Dropout(0.5),
    layers.Dense(10, activation='softmax')
])

优化器调参

from tensorflow.keras.optimizers import Adam

optimizer = Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07)
model.compile(optimizer=optimizer,
              loss='categorical_crossentropy',
              metrics=['accuracy'])

数据增强

from tensorflow.keras.preprocessing.image import ImageDataGenerator

datagen = ImageDataGenerator(
    rotation_range=15,
    width_shift_range=0.1,
    height_shift_range=0.1,
    horizontal_flip=True,
    zoom_range=0.1
)
datagen.fit(train_images)

history = model.fit(datagen.flow(train_images, train_labels, batch_size=64),
                    epochs=50,
                    validation_data=(test_images, test_labels))

早停和模型检查点

from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint

callbacks = [
    EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True),
    ModelCheckpoint('best_model.h5', monitor='val_accuracy', save_best_only=True)
]

history = model.fit(..., callbacks=callbacks, epochs=100)