开源模型应用落地-工具使用篇-从零开始搭建Qdrant Web UI-可视化管理工具-Windows(十)

发布于:2025-06-14 ⋅ 阅读:(21) ⋅ 点赞:(0)

一、前言

    Qdrant 是一个高性能的向量搜索引擎,广泛应用于相似性搜索、推荐系统和大规模数据检索等场景。虽然其原生 API 提供了强大的功能,但对于开发者和运维人员来说,缺乏直观的可视化界面常常增加了使用门槛。为了解决这一问题,Qdrant Web UI 应运而生——它提供了一个简洁友好的前端操作界面,帮助用户更高效地管理集合、查看数据、执行查询和监控服务状态。

    本文将手把手带你搭建 Qdrant Web UI,从环境准备到部署运行,一步步实现对 Qdrant 服务的可视化管理,让向量数据库的操作变得更加简单直观。


二、术语

2.1、向量数据库

    向量数据库是一种专门用于存储和处理高维向量数据的数据库系统。与传统的关系型数据库或文档数据库不同,向量数据库的设计目标是高效地支持向量数据的索引和相似性搜索。

    在传统数据库中,数据通常是以结构化的表格形式存储,每个记录都有预定义的字段。但是,对于包含大量高维向量的数据,如图像、音频、文本等,传统的数据库模型往往无法有效地处理。向量数据库通过引入特定的数据结构和索引算法,允许高效地存储和查询向量数据。

    向量数据库的核心概念是向量索引。它使用一种称为向量空间模型的方法,将向量映射到多维空间中的点,并利用这种映射关系构建索引结构。这样,当需要搜索相似向量时,可以通过计算向量之间的距离或相似度来快速定位相似的向量。

2.2、向量数据库的使用场景

     向量数据库在许多领域中都有广泛的应用场景,特别是涉及到高维向量数据存储和相似性搜索的任务。以下是一些常见的使用场景:

  • 目标识别和图像搜索:向量数据库可用于存储图像特征向量,以支持快速的相似图像搜索和目标识别。它在图像搜索引擎、人脸识别和视频监控等领域具有重要作用。
  • 推荐系统:向量数据库可以存储用户和物品的特征向量,用于个性化推荐。基于相似性搜索,可以找到与用户兴趣相似的物品,提供个性化的推荐结果。
  • 自然语言处理:在文本处理任务中,可以使用向量数据库存储文本向量,如词向量、句向量等。基于相似性搜索,可以进行文本匹配、语义相似度计算等操作。
  • 数据聚类和分类:向量数据库可用于高维向量数据的聚类和分类分析。它可以帮助发现数据集中的聚类模式和类别,用于数据挖掘和机器学习任务。
  • 检索与推荐系统:在电子商务和商品搜索中,向量数据库可以存储商品特征向量,以支持相似商品的搜索和推荐。它可以提供更准确和个性化的搜索结果。
  • 医疗和生物信息学:向量数据库可用于存储基因表达向量、蛋白质特征向量等生物信息学数据。它可以在基因组学、药物研发等领域中帮助进行数据分析和研究。
  • 视频内容分析:向量数据库可用于存储视频特征向量,如视频帧特征、视频片段特征等。它可以用于视频内容搜索、视频剪辑和视频推荐等应用。

2.3、Qdrant

    Qdrant 是一个高性能、易用、功能丰富的开源向量搜索引擎,适用于需要处理大量向量数据并执行相似性搜索的各种 AI 应用。它结合了现代索引技术、灵活的数据模型以及强大的 API 接口,非常适合构建智能推荐、图像检索、语义搜索等系统。


三、前置条件

3.1、下载Qdrant

https://github.com/qdrant/qdrant/releases/tag/v1.14.1https://github.com/qdrant/qdrant/releases/tag/v1.14.1    此次以Windows系统为例,下载文件:qdrant-x86_64-pc-windows-msvc.zip

    解压qdrant-x86_64-pc-windows-msvc.zip得到一个qdrant.exe文件

3.2、新建config配置文件

  qdrant.exe文件的同级目录创建一个config文件夹,并在config文件夹里面创建一个config.yaml,并写入以下内容

log_level: INFO

# Logging configuration
# Qdrant logs to stdout. You may configure to also write logs to a file on disk.
# Be aware that this file may grow indefinitely.
# logger:
#   # Logging format, supports `text` and `json`
#   format: text
#   on_disk:
#     enabled: true
#     log_file: path/to/log/file.log
#     log_level: INFO
#     # Logging format, supports `text` and `json`
#     format: text

storage:
  # Where to store all the data
  storage_path: E:/qdrant/storage

  # Where to store snapshots
  snapshots_path: E:/qdrant/snapshots

  snapshots_config:
    # "local" or "s3" - where to store snapshots
    snapshots_storage: local
    # s3_config:
    #   bucket: ""
    #   region: ""
    #   access_key: ""
    #   secret_key: ""

  # Where to store temporary files
  # If null, temporary snapshots are stored in: storage/snapshots_temp/
  temp_path: null

  # If true - point payloads will not be stored in memory.
  # It will be read from the disk every time it is requested.
  # This setting saves RAM by (slightly) increasing the response time.
  # Note: those payload values that are involved in filtering and are indexed - remain in RAM.
  # 
  # Default: true
  on_disk_payload: true

  # Maximum number of concurrent updates to shard replicas
  # If `null` - maximum concurrency is used.
  update_concurrency: null

  # Write-ahead-log related configuration
  wal:
    # Size of a single WAL segment
    wal_capacity_mb: 32

    # Number of WAL segments to create ahead of actual data requirement
    wal_segments_ahead: 0

  # Normal node - receives all updates and answers all queries
  node_type: "Normal"

  # Listener node - receives all updates, but does not answer search/read queries
  # Useful for setting up a dedicated backup node
  # node_type: "Listener"

  performance:
    # Number of parallel threads used for search operations. If 0 - auto selection.
    max_search_threads: 0

    # Max number of threads (jobs) for running optimizations across all collections, each thread runs one job.
    # If 0 - have no limit and choose dynamically to saturate CPU.
    # Note: each optimization job will also use `max_indexing_threads` threads by itself for index building.
    max_optimization_threads: 0

    # CPU budget, how many CPUs (threads) to allocate for an optimization job.
    # If 0 - auto selection, keep 1 or more CPUs unallocated depending on CPU size
    # If negative - subtract this number of CPUs from the available CPUs.
    # If positive - use this exact number of CPUs.
    optimizer_cpu_budget: 0

    # Prevent DDoS of too many concurrent updates in distributed mode.
    # One external update usually triggers multiple internal updates, which breaks internal
    # timings. For example, the health check timing and consensus timing.
    # If null - auto selection.
    update_rate_limit: null

    # Limit for number of incoming automatic shard transfers per collection on this node, does not affect user-requested transfers.
    # The same value should be used on all nodes in a cluster.
    # Default is to allow 1 transfer.
    # If null - allow unlimited transfers.
    #incoming_shard_transfers_limit: 1

    # Limit for number of outgoing automatic shard transfers per collection on this node, does not affect user-requested transfers.
    # The same value should be used on all nodes in a cluster.
    # Default is to allow 1 transfer.
    # If null - allow unlimited transfers.
    #outgoing_shard_transfers_limit: 1

    # Enable async scorer which uses io_uring when rescoring.
    # Only supported on Linux, must be enabled in your kernel.
    # See: <https://qdrant.tech/articles/io_uring/#and-what-about-qdrant>
    #async_scorer: false

  optimizers:
    # The minimal fraction of deleted vectors in a segment, required to perform segment optimization
    deleted_threshold: 0.2

    # The minimal number of vectors in a segment, required to perform segment optimization
    vacuum_min_vector_number: 1000

    # Target amount of segments optimizer will try to keep.
    # Real amount of segments may vary depending on multiple parameters:
    #  - Amount of stored points
    #  - Current write RPS
    #
    # It is recommended to select default number of segments as a factor of the number of search threads,
    # so that each segment would be handled evenly by one of the threads.
    # If `default_segment_number = 0`, will be automatically selected by the number of available CPUs
    default_segment_number: 0

    # Do not create segments larger this size (in KiloBytes).
    # Large segments might require disproportionately long indexation times,
    # therefore it makes sense to limit the size of segments.
    #
    # If indexation speed have more priority for your - make this parameter lower.
    # If search speed is more important - make this parameter higher.
    # Note: 1Kb = 1 vector of size 256
    # If not set, will be automatically selected considering the number of available CPUs.
    max_segment_size_kb: null

    # Maximum size (in KiloBytes) of vectors to store in-memory per segment.
    # Segments larger than this threshold will be stored as read-only memmapped file.
    # To enable memmap storage, lower the threshold
    # Note: 1Kb = 1 vector of size 256
    # To explicitly disable mmap optimization, set to `0`.
    # If not set, will be disabled by default.
    memmap_threshold_kb: null

    # Maximum size (in KiloBytes) of vectors allowed for plain index.
    # Default value based on https://github.com/google-research/google-research/blob/master/scann/docs/algorithms.md
    # Note: 1Kb = 1 vector of size 256
    # To explicitly disable vector indexing, set to `0`.
    # If not set, the default value will be used.
    indexing_threshold_kb: 20000

    # Interval between forced flushes.
    flush_interval_sec: 5

    # Max number of threads (jobs) for running optimizations per shard.
    # Note: each optimization job will also use `max_indexing_threads` threads by itself for index building.
    # If null - have no limit and choose dynamically to saturate CPU.
    # If 0 - no optimization threads, optimizations will be disabled.
    max_optimization_threads: null

  # This section has the same options as 'optimizers' above. All values specified here will overwrite the collections
  # optimizers configs regardless of the config above and the options specified at collection creation.
  #optimizers_overwrite:
  #  deleted_threshold: 0.2
  #  vacuum_min_vector_number: 1000
  #  default_segment_number: 0
  #  max_segment_size_kb: null
  #  memmap_threshold_kb: null
  #  indexing_threshold_kb: 20000
  #  flush_interval_sec: 5
  #  max_optimization_threads: null

  # Default parameters of HNSW Index. Could be overridden for each collection or named vector individually
  hnsw_index:
    # Number of edges per node in the index graph. Larger the value - more accurate the search, more space required.
    m: 16

    # Number of neighbours to consider during the index building. Larger the value - more accurate the search, more time required to build index.
    ef_construct: 100

    # Minimal size (in KiloBytes) of vectors for additional payload-based indexing.
    # If payload chunk is smaller than `full_scan_threshold_kb` additional indexing won't be used -
    # in this case full-scan search should be preferred by query planner and additional indexing is not required.
    # Note: 1Kb = 1 vector of size 256
    full_scan_threshold_kb: 10000

    # Number of parallel threads used for background index building.
    # If 0 - automatically select.
    # Best to keep between 8 and 16 to prevent likelihood of building broken/inefficient HNSW graphs.
    # On small CPUs, less threads are used.
    max_indexing_threads: 0

    # Store HNSW index on disk. If set to false, index will be stored in RAM. Default: false
    on_disk: false

    # Custom M param for hnsw graph built for payload index. If not set, default M will be used.
    payload_m: null

  # Default shard transfer method to use if none is defined.
  # If null - don't have a shard transfer preference, choose automatically.
  # If stream_records, snapshot or wal_delta - prefer this specific method.
  # More info: https://qdrant.tech/documentation/guides/distributed_deployment/#shard-transfer-method
  shard_transfer_method: null

  # Default parameters for collections
  collection:
    # Number of replicas of each shard that network tries to maintain
    replication_factor: 1

    # How many replicas should apply the operation for us to consider it successful
    write_consistency_factor: 1

    # Default parameters for vectors.
    vectors:
      # Whether vectors should be stored in memory or on disk.
      on_disk: null

    # shard_number_per_node: 1

    # Default quantization configuration.
    # More info: https://qdrant.tech/documentation/guides/quantization
    quantization: null

    # Default strict mode parameters for newly created collections.
    strict_mode:
      # Whether strict mode is enabled for a collection or not.
      enabled: false

      # Max allowed `limit` parameter for all APIs that don't have their own max limit.
      max_query_limit: null

      # Max allowed `timeout` parameter.
      max_timeout: null

      # Allow usage of unindexed fields in retrieval based (eg. search) filters.
      unindexed_filtering_retrieve: null

      # Allow usage of unindexed fields in filtered updates (eg. delete by payload).
      unindexed_filtering_update: null

      # Max HNSW value allowed in search parameters.
      search_max_hnsw_ef: null

      # Whether exact search is allowed or not.
      search_allow_exact: null

      # Max oversampling value allowed in search.
      search_max_oversampling: null

service:
  # Maximum size of POST data in a single request in megabytes
  max_request_size_mb: 32

  # Number of parallel workers used for serving the api. If 0 - equal to the number of available cores.
  # If missing - Same as storage.max_search_threads
  max_workers: 0

  # Host to bind the service on
  host: 0.0.0.0

  # HTTP(S) port to bind the service on
  http_port: 6333

  # gRPC port to bind the service on.
  # If `null` - gRPC is disabled. Default: null
  # Comment to disable gRPC:
  grpc_port: 6334

  # Enable CORS headers in REST API.
  # If enabled, browsers would be allowed to query REST endpoints regardless of query origin.
  # More info: https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
  # Default: true
  enable_cors: true

  # Enable HTTPS for the REST and gRPC API
  enable_tls: false

  # Check user HTTPS client certificate against CA file specified in tls config
  verify_https_client_certificate: false

  # Set an api-key.
  # If set, all requests must include a header with the api-key.
  # example header: `api-key: <API-KEY>`
  #
  # If you enable this you should also enable TLS.
  # (Either above or via an external service like nginx.)
  # Sending an api-key over an unencrypted channel is insecure.
  #
  # Uncomment to enable.
  # api_key: your_secret_api_key_here

  # Set an api-key for read-only operations.
  # If set, all requests must include a header with the api-key.
  # example header: `api-key: <API-KEY>`
  #
  # If you enable this you should also enable TLS.
  # (Either above or via an external service like nginx.)
  # Sending an api-key over an unencrypted channel is insecure.
  #
  # Uncomment to enable.
  # read_only_api_key: your_secret_read_only_api_key_here

  # Uncomment to enable JWT Role Based Access Control (RBAC).
  # If enabled, you can generate JWT tokens with fine-grained rules for access control.
  # Use generated token instead of API key.
  #
  # jwt_rbac: true

  # Hardware reporting adds information to the API responses with a
  # hint on how many resources were used to execute the request.
  #
  # Uncomment to enable.
  # hardware_reporting: true

cluster:
  # Use `enabled: true` to run Qdrant in distributed deployment mode
  enabled: false

  # Configuration of the inter-cluster communication
  p2p:
    # Port for internal communication between peers
    port: 6335

    # Use TLS for communication between peers
    enable_tls: false

  # Configuration related to distributed consensus algorithm
  consensus:
    # How frequently peers should ping each other.
    # Setting this parameter to lower value will allow consensus
    # to detect disconnected nodes earlier, but too frequent
    # tick period may create significant network and CPU overhead.
    # We encourage you NOT to change this parameter unless you know what you are doing.
    tick_period_ms: 100

# Set to true to prevent service from sending usage statistics to the developers.
# Read more: https://qdrant.tech/documentation/guides/telemetry
telemetry_disabled: false

# TLS configuration.
# Required if either service.enable_tls or cluster.p2p.enable_tls is true.
tls:
  # Server certificate chain file
  cert: ./tls/cert.pem

  # Server private key file
  key: ./tls/key.pem

  # Certificate authority certificate file.
  # This certificate will be used to validate the certificates
  # presented by other nodes during inter-cluster communication.
  #
  # If verify_https_client_certificate is true, it will verify
  # HTTPS client certificate
  #
  # Required if cluster.p2p.enable_tls is true.
  ca_cert: ./tls/cacert.pem

  # TTL in seconds to reload certificate from disk, useful for certificate rotations.
  # Only works for HTTPS endpoints. Does not support gRPC (and intra-cluster communication).
  # If `null` - TTL is disabled.
  cert_ttl: 3600

主要修改以下参数:

  •    storage_path: E:/qdrant/storage
  •    snapshots_path: E:/qdrant/snapshots
  •    host: 0.0.0.0
  •    http_port: 6333

3.3、生成WebUI资源文件

  执行以下sh文件,生成static目录

#!/usr/bin/env bash

set -euo pipefail

STATIC_DIR=${STATIC_DIR:-"./static"}
OPENAPI_FILE=${OPENAPI_DIR:-"./docs/redoc/master/openapi.json"}

# Download `dist.zip` from the latest release of https://github.com/qdrant/qdrant-web-ui and unzip given folder

# Get latest dist.zip, assume jq is installed
DOWNLOAD_LINK=$(curl --silent "https://api.github.com/repos/qdrant/qdrant-web-ui/releases/latest" | jq -r '.assets[] | select(.name=="dist-qdrant.zip") | .browser_download_url')

if command -v wget &> /dev/null
then
    wget -O dist-qdrant.zip $DOWNLOAD_LINK
else
    curl -L -o dist-qdrant.zip $DOWNLOAD_LINK
fi

rm -rf "${STATIC_DIR}/"*
unzip -o dist-qdrant.zip -d "${STATIC_DIR}"
rm dist-qdrant.zip
cp -r "${STATIC_DIR}/dist/"* "${STATIC_DIR}"
rm -rf "${STATIC_DIR}/dist"

cp "${OPENAPI_FILE}" "${STATIC_DIR}/openapi.json"

  资源文件明细:

注意: 把生成的static文件夹,复制到qdrant.exe文件的同级目录


四、运行Qdrant Web UI

4.1、启动Qdrant

 在命令行执行以下命令

qdrant.exe --config-path E:/qdrant/config/config.yaml

4.2、访问WebUI

http://localhost:6333/dashboard


五、附带说明

5.1、直接使用qdrant-web-ui

    以上web-ui是集成到qdrant的使用方式,也可以直接使用qdrant-web-ui的方式

https://github.com/qdrant/qdrant-web-uihttps://github.com/qdrant/qdrant-web-ui  1. 下载qdrant-web-ui源码

  2. 安装依赖

      npm install

  3. 启动开发服务器

      npm start

  4. 访问qdrant-web-ui(端口为5173)

      打开浏览器访问 http://localhost:5173/

  5. 修改默认端口为3000

   修改vite.config.js文件

import { defineConfig } from 'vite';
import reactRefresh from '@vitejs/plugin-react';
import svgrPlugin from 'vite-plugin-svgr';
import eslintPlugin from 'vite-plugin-eslint';
import {rehypeMetaAsAttributes} from "./src/lib/rehype-meta-as-attributes";

// https://vitejs.dev/config/
export default defineConfig(async () => {
  const mdx = await import('@mdx-js/rollup');

  return {
    base: './',
    // This changes the output dir from dist to build
    // comment this out if that isn't relevant for your project
    build: {
      outDir: 'dist',
    },
    server: {
      port: 3000 // 修改为你希望使用的端口号
    },
    plugins: [
      reactRefresh(),
      svgrPlugin({
        svgrOptions: {
          icon: true,
          // ...svgr options (https://react-svgr.com/docs/options/)
        },
      }),
      eslintPlugin({
        include: ['src/**/*.jsx', 'src/**/*.js', 'src/**/*.ts', 'src/**/*.tsx'],
        exclude: [
          'node_modules/**',
          'dist/**, build/**',
          '**/*.mdx',
          '**/*.md'],
      }),
      mdx.default({
        rehypePlugins: [
          rehypeMetaAsAttributes,
        ],
      }),
    ],
    test: {
      globals: true,
      environment: 'jsdom',
      setupFiles: ['./src/setupTests.js'],
    },
  }
});


网站公告

今日签到

点亮在社区的每一天
去签到