一、算法实现伪代码
1. 数据预处理模块
def preprocess_data(image, patient_info):
image = denoise(image)
image = normalize(image)
encoded_info = encode_patient_info(patient_info)
input_data = merge_modalities(image, encoded_info)
return input_data
2. 大模型训练模块
def train_model(training_data):
model = load_pretrained_model("vit-base")
freeze_layers(model, freeze_ratio=0.5)
loss_fn = FocalLoss()
optimizer = AdamW(model.parameters(), lr=1e-4)
for epoch in range(MAX_EPOCH):
for batch in training_data:
input_data, labels = batch
output = model(input_data)
loss = loss_fn(output, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
save_model(model, "retina_detachment_predictor.pth")
return model
3. 预测与决策模块
def predict_and_decide(model, input_data):
prediction = model.forward(input_data)
detachment_range = prediction["range"]
hole_position = prediction["hole"]
risk_score = prediction["complication_risk"]
surgery_plan = generate_surgery_plan(detachment_range, hole_position)
anesthesia_plan = generate_anesthesia_plan(patient_info, surgery_plan)
return {
"surgery_plan": surgery_plan,
"anesthesia_plan": anesthesia_plan,
"risk_alert": risk_score > THRESHOLD
}
二、模块流程图(Mermaid格式)
数据采集与预处理系统
graph TD
A[患者就诊] --> B[采集基本信息]
B --> C[眼部影像采集(OCT/B超)]
C --> D[数据预处理]
D --> E[特征提取与编码]
E --> F[输入大模型]
模型训练与部署系统
graph TD
A[历史病例库] --> B[数据清洗与标注]
B --> C[多模态数据融合]
C --> D[模型训练]
D --> E[模型验证]
E --> F[模型部署(API服务)]
F --> G[实时预测服务]
术中决策支持系统