基于大模型预测单纯性孔源性视网膜脱离的技术方案

发布于:2025-06-14 ⋅ 阅读:(18) ⋅ 点赞:(0)


一、算法实现伪代码

1. 数据预处理模块

def preprocess_data(image, patient_info):  
    # 图像去噪与标准化  
    image = denoise(image)  
    image = normalize(image)  
    
    # 患者信息编码(年龄、病史等)  
    encoded_info = encode_patient_info(patient_info)  
    
    # 合并多模态数据  
    input_data = merge_modalities(image, encoded_info)  
    return input_data  

2. 大模型训练模块

def train_model(training_data):  
    # 加载预训练模型(如ViT+Transformer)  
    model = load_pretrained_model("vit-base")  
    
    # 冻结部分层,微调高层  
    freeze_layers(model, freeze_ratio=0.5)  
    
    # 定义损失函数与优化器  
    loss_fn = FocalLoss()  
    optimizer = AdamW(model.parameters(), lr=1e-4)  
    
    # 训练循环  
    for epoch in range(MAX_EPOCH):  
        for batch in training_data:  
            input_data, labels = batch  
            output = model(input_data)  
            loss = loss_fn(output, labels)  
            optimizer.zero_grad()  
            loss.backward()  
            optimizer.step()  
    
    # 保存模型  
    save_model(model, "retina_detachment_predictor.pth")  
    return model  

3. 预测与决策模块

def predict_and_decide(model, input_data):  
    # 模型推理  
    prediction = model.forward(input_data)  
    
    # 解析预测结果  
    detachment_range = prediction["range"]  
    hole_position = prediction["hole"]  
    risk_score = prediction["complication_risk"]  
    
    # 生成手术方案  
    surgery_plan = generate_surgery_plan(detachment_range, hole_position)  
    
    # 生成麻醉方案  
    anesthesia_plan = generate_anesthesia_plan(patient_info, surgery_plan)  
    
    return {
     
        "surgery_plan": surgery_plan,  
        "anesthesia_plan": anesthesia_plan,  
        "risk_alert": risk_score > THRESHOLD  
    }  

二、模块流程图(Mermaid格式)

数据采集与预处理系统

graph TD  
    A[患者就诊] --> B[采集基本信息]  
    B --> C[眼部影像采集(OCT/B超)]  
    C --> D[数据预处理]  
    D --> E[特征提取与编码]  
    E --> F[输入大模型]  

模型训练与部署系统

graph TD  
    A[历史病例库] --> B[数据清洗与标注]  
    B --> C[多模态数据融合]  
    C --> D[模型训练]  
    D --> E[模型验证]  
    E --> F[模型部署(API服务)]  
    F --> G[实时预测服务]  

术中决策支持系统