DAY 52 神经网络调参指南
知识点回顾:
- 随机种子
- 内参的初始化
- 神经网络调参指南
- 参数的分类
- 调参的顺序
- 各部分参数的调整心得
作业:对于day'41的简单cnn,看看是否可以借助调参指南进一步提高精度。
day41的简单CNN最后的结果,今天要做的是使用调参指南中的方法进一步提高精度
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np
# 定义通道注意力
class ChannelAttention(nn.Module):
def __init__(self, in_channels, ratio=16):
"""
通道注意力机制初始化
参数:
in_channels: 输入特征图的通道数
ratio: 降维比例,用于减少参数量,默认为16
"""
super().__init__()
# 全局平均池化,将每个通道的特征图压缩为1x1,保留通道间的平均值信息
self.avg_pool = nn.AdaptiveAvgPool2d(1)
# 全局最大池化,将每个通道的特征图压缩为1x1,保留通道间的最显著特征
self.max_pool = nn.AdaptiveMaxPool2d(1)
# 共享全连接层,用于学习通道间的关系
# 先降维(除以ratio),再通过ReLU激活,最后升维回原始通道数
self.fc = nn.Sequential(
nn.Linear(in_channels, in_channels // ratio, bias=False), # 降维层
nn.ReLU(), # 非线性激活函数
nn.Linear(in_channels // ratio, in_channels, bias=False) # 升维层
)
# Sigmoid函数将输出映射到0-1之间,作为各通道的权重
self.sigmoid = nn.Sigmoid()
def forward(self, x):
"""
前向传播函数
参数:
x: 输入特征图,形状为 [batch_size, channels, height, width]
返回:
调整后的特征图,通道权重已应用
"""
# 获取输入特征图的维度信息,这是一种元组的解包写法
b, c, h, w = x.shape
# 对平均池化结果进行处理:展平后通过全连接网络
avg_out = self.fc(self.avg_pool(x).view(b, c))
# 对最大池化结果进行处理:展平后通过全连接网络
max_out = self.fc(self.max_pool(x).view(b, c))
# 将平均池化和最大池化的结果相加并通过sigmoid函数得到通道权重
attention = self.sigmoid(avg_out + max_out).view(b, c, 1, 1)
# 将注意力权重与原始特征相乘,增强重要通道,抑制不重要通道
return x * attention #这个运算是pytorch的广播机制
## 空间注意力模块
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super().__init__()
self.conv = nn.Conv2d(2, 1, kernel_size, padding=kernel_size//2, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
# 通道维度池化
avg_out = torch.mean(x, dim=1, keepdim=True) # 平均池化:(B,1,H,W)
max_out, _ = torch.max(x, dim=1, keepdim=True) # 最大池化:(B,1,H,W)
pool_out = torch.cat([avg_out, max_out], dim=1) # 拼接:(B,2,H,W)
attention = self.conv(pool_out) # 卷积提取空间特征
return x * self.sigmoid(attention) # 特征与空间权重相乘
## CBAM模块
class CBAM(nn.Module):
def __init__(self, in_channels, ratio=16, kernel_size=7):
super().__init__()
self.channel_attn = ChannelAttention(in_channels, ratio)
self.spatial_attn = SpatialAttention(kernel_size)
def forward(self, x):
x = self.channel_attn(x)
x = self.spatial_attn(x)
return x
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np
# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")
# 1. 数据预处理
# 训练集:使用多种数据增强方法提高模型泛化能力
train_transform = transforms.Compose([
# 随机裁剪图像,从原图中随机截取32x32大小的区域
transforms.RandomCrop(32, padding=4),
# 随机水平翻转图像(概率0.5)
transforms.RandomHorizontalFlip(),
# 随机颜色抖动:亮度、对比度、饱和度和色调随机变化
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
# 随机旋转图像(最大角度15度)
transforms.RandomRotation(15),
# 将PIL图像或numpy数组转换为张量
transforms.ToTensor(),
# 标准化处理:每个通道的均值和标准差,使数据分布更合理
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
# 测试集:仅进行必要的标准化,保持数据原始特性,标准化不损失数据信息,可还原
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(
root='./data',
train=True,
download=True,
transform=train_transform # 使用增强后的预处理
)
test_dataset = datasets.CIFAR10(
root='./data',
train=False,
transform=test_transform # 测试集不使用增强
)
# 3. 创建数据加载器
batch_size = 80
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# 4. 定义CNN模型的定义(替代原MLP)
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
# 初始卷积层
self.conv_init = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU()
)
# 第一卷积块(含CBAM)
self.block1 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
CBAM(64) # 在卷积块后添加CBAM
)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.drop1 = nn.Dropout2d(0.1)
# 第二卷积块(含CBAM)
self.block2 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False), # stride=2降维
nn.BatchNorm2d(128),
nn.ReLU(),
nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(128),
CBAM(128) # 在卷积块后添加CBAM
)
self.pool2 = nn.AvgPool2d(kernel_size=2, stride=2)
self.drop2 = nn.Dropout2d(0.2)
# 第三卷积块(含CBAM)
self.block3 = nn.Sequential(
nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(256),
CBAM(256) # 在卷积块后添加CBAM
)
self.pool3 = nn.AdaptiveAvgPool2d(4)
self.drop3 = nn.Dropout2d(0.3)
# 全连接层
self.fc = nn.Sequential(
nn.Linear(256 * 4 * 4, 512),
nn.BatchNorm1d(512),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(512, 128),
nn.BatchNorm1d(128),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(128, 10)
)
def forward(self, x):
x = self.conv_init(x)
x = self.block1(x)
x = self.pool1(x)
x = self.drop1(x)
x = self.block2(x)
x = self.pool2(x)
x = self.drop2(x)
x = self.block3(x)
x = self.pool3(x)
x = self.drop3(x)
x = x.view(-1, 256 * 4 * 4)
x = self.fc(x)
return x
# 初始化模型
model = CNN()
model = model.to(device) # 将模型移至GPU(如果可用)
criterion = nn.CrossEntropyLoss() # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001) # Adam优化器
# 引入学习率调度器,在训练过程中动态调整学习率--训练初期使用较大的 LR 快速降低损失,训练后期使用较小的 LR 更精细地逼近全局最优解。
# 在每个 epoch 结束后,需要手动调用调度器来更新学习率,可以在训练过程中调用 scheduler.step()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer, # 指定要控制的优化器(这里是Adam)
mode='min', # 监测的指标是"最小化"(如损失函数)
patience=3, # 如果连续3个epoch指标没有改善,才降低LR
factor=0.5 # 降低LR的比例(新LR = 旧LR × 0.5)
)
# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):
model.train() # 设置为训练模式
# 记录每个 iteration 的损失
all_iter_losses = [] # 存储所有 batch 的损失
iter_indices = [] # 存储 iteration 序号
# 记录每个 epoch 的准确率和损失
train_acc_history = []
test_acc_history = []
train_loss_history = []
test_loss_history = []
# 早停相关参数
best_test_acc = 0.0
patience = 5 # 早停耐心值,5个epoch
counter = 0 # 计数器,记录连续未改进的epoch数
early_stop = False # 早停标志
for epoch in range(epochs):
running_loss = 0.0
correct = 0
total = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device) # 移至GPU
optimizer.zero_grad() # 梯度清零
output = model(data) # 前向传播
loss = criterion(output, target) # 计算损失
loss.backward() # 反向传播
optimizer.step() # 更新参数
# 记录当前 iteration 的损失
iter_loss = loss.item()
all_iter_losses.append(iter_loss)
iter_indices.append(epoch * len(train_loader) + batch_idx + 1)
# 统计准确率和损失
running_loss += iter_loss
_, predicted = output.max(1)
total += target.size(0)
correct += predicted.eq(target).sum().item()
# 每100个批次打印一次训练信息
if (batch_idx + 1) % 100 == 0:
print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} '
f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')
# 计算当前epoch的平均训练损失和准确率
epoch_train_loss = running_loss / len(train_loader)
epoch_train_acc = 100. * correct / total
train_acc_history.append(epoch_train_acc)
train_loss_history.append(epoch_train_loss)
# 测试阶段
model.eval() # 设置为评估模式
test_loss = 0
correct_test = 0
total_test = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output, target).item()
_, predicted = output.max(1)
total_test += target.size(0)
correct_test += predicted.eq(target).sum().item()
epoch_test_loss = test_loss / len(test_loader)
epoch_test_acc = 100. * correct_test / total_test
test_acc_history.append(epoch_test_acc)
test_loss_history.append(epoch_test_loss)
# 更新学习率调度器
scheduler.step(epoch_test_loss)
print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')
# 早停检查
if epoch_test_acc > best_test_acc:
best_test_acc = epoch_test_acc
counter = 0
# 保存最佳模型(可选)
torch.save(model.state_dict(), 'best_model.pth')
print(f"找到更好的模型,准确率: {best_test_acc:.2f}%,已保存")
else:
counter += 1
print(f"早停计数器: {counter}/{patience}")
if counter >= patience:
print(f"早停触发!连续 {patience} 个epoch测试准确率未提高")
early_stop = True
# 如果触发早停,跳出训练循环
if early_stop:
print(f"训练在第 {epoch+1} 个epoch提前结束")
break
# 绘制所有 iteration 的损失曲线
plot_iter_losses(all_iter_losses, iter_indices)
# 绘制每个 epoch 的准确率和损失曲线
plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)
return epoch_test_acc # 返回最终测试准确率
# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):
plt.figure(figsize=(10, 4))
plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')
plt.xlabel('Iteration(Batch序号)')
plt.ylabel('损失值')
plt.title('每个 Iteration 的训练损失')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
# 7. 绘制每个 epoch 的准确率和损失曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):
epochs = range(1, len(train_acc) + 1)
plt.figure(figsize=(12, 4))
# 绘制准确率曲线
plt.subplot(1, 2, 1)
plt.plot(epochs, train_acc, 'b-', label='训练准确率')
plt.plot(epochs, test_acc, 'r-', label='测试准确率')
plt.xlabel('Epoch')
plt.ylabel('准确率 (%)')
plt.title('训练和测试准确率')
plt.legend()
plt.grid(True)
# 绘制损失曲线
plt.subplot(1, 2, 2)
plt.plot(epochs, train_loss, 'b-', label='训练损失')
plt.plot(epochs, test_loss, 'r-', label='测试损失')
plt.xlabel('Epoch')
plt.ylabel('损失值')
plt.title('训练和测试损失')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
# 8. 执行训练和测试
epochs = 40 # 增加训练轮次以获得更好效果
print("开始使用CNN训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")
# # 保存模型
# torch.save(model.state_dict(), 'cifar10_cnn_model.pth')
# print("模型已保存为: cifar10_cnn_model.pth")
训练完成!最终测试准确率: 87.04%