文章目录
1、Spring MVC堵塞式编程中的技术方案
a) 最简单的方案,使用 DeferredResult 代码如下,
import lombok.RequiredArgsConstructor;
import lombok.extern.slf4j.Slf4j;
import org.springframework.web.bind.annotation.*;
import org.springframework.web.context.request.async.DeferredResult;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
@Slf4j
@RestController()
@RequestMapping("/v1/defered")
@RequiredArgsConstructor
public class DeferredResultController {
// 延迟执行服务
private ExecutorService executorService = Executors.newSingleThreadExecutor();
@PostMapping("/test")
public DeferredResult<String> simpleTest() {
// 1. 创建DeferredResult对象
DeferredResult<String> deferredResult = new DeferredResult<>(1000L);
// 2. 设置超时回调,当DeferredResult超时后,会执行这个回调函数
deferredResult.onTimeout(() -> {
log.info("DeferredResult超时了");
deferredResult.setResult("延迟!");
});
// 延迟2秒钟执行
executorService.submit(() -> {
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
log.info("执行结果:{}", deferredResult.getResult());
deferredResult.setResult("hello world1");
});
return deferredResult;
}
}
代码解读:
- 创建DeferredResult对象,该对象默认设置了1s的超时时间,
- 设置超时回调,如果在1秒钟内未回调结果,那么则执行 onTimeout的回调函数。
- 模拟执行一个异步线程,2秒之后再执行结果。
最终控制台输出如下。
DeferredResult超时了
执行结果:延迟!
会发现,最后超时之后,仍然会执行成功,不过deferredResult里面的结果被填充。
用户收到的结果
延迟!
b) 上点难度,使用redis监听事件,根据事件的不同返回不同的数据值
1. 首先配置data.redis框架中的RedisTemplate模板以及RedisMessageListenerContainer(监听容器)
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.listener.RedisMessageListenerContainer;
import org.springframework.data.redis.serializer.StringRedisSerializer;
@Configuration
public class MyRedisConfig {
@Bean
public RedisTemplate<String, String> redisTemplate(RedisConnectionFactory factory) {
RedisTemplate<String, String> template = new RedisTemplate<>();
template.setConnectionFactory(factory);
template.setKeySerializer(new StringRedisSerializer());
template.setValueSerializer(new StringRedisSerializer());
template.setHashKeySerializer(new StringRedisSerializer());
template.setHashValueSerializer(new StringRedisSerializer());
template.afterPropertiesSet();
return template;
}
@Bean
public RedisMessageListenerContainer redisMessageListenerContainer(RedisConnectionFactory factory) {
RedisMessageListenerContainer container = new RedisMessageListenerContainer();
container.setConnectionFactory(factory);
return container;
}
}
2. 编写异步转同步方法。
import lombok.RequiredArgsConstructor;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.connection.Message;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.listener.ChannelTopic;
import org.springframework.data.redis.listener.RedisMessageListenerContainer;
import org.springframework.data.redis.connection.MessageListener;
import org.springframework.web.bind.annotation.*;
import org.springframework.web.context.request.async.DeferredResult;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
@Slf4j
@RestController()
@RequestMapping("/v1/redis/defered")
@RequiredArgsConstructor
public class DeferredResultRedisController {
@Autowired
private RedisTemplate<String, String> redisTemplate2;
@Autowired
private RedisMessageListenerContainer container;
private final Map<String, DeferredResult<String>> deferredResults = new ConcurrentHashMap<>();
private final Map<String, MessageListener> listeners = new ConcurrentHashMap<>();
@GetMapping("/async/subscribe/{channel}")
public DeferredResult<String> subscribe(@PathVariable String channel) {
DeferredResult<String> result = new DeferredResult<>(20000l, "Timeout6666");
String channelName = "channel:" + channel;
deferredResults.put(channelName, result);
// 创建消息监听器
MessageListener listener = new MessageListener() {
@Override
public void onMessage(Message message, byte[] pattern) {
String receivedChannel = new String(message.getChannel());
String msg;
try {
// 模拟可能抛出异常的处理
msg = parseMessage(message.getBody());
} catch (Exception e) {
// 手动设置错误结果
result.setErrorResult("Message parsing failed: " + e.getMessage());
return;
}
if (receivedChannel.equals(channelName)) {
DeferredResult<String> deferred = deferredResults.remove(channelName);
if (deferred != null) {
deferred.setResult(msg);
}
container.removeMessageListener(this);
listeners.remove(channelName);
}
}
private String parseMessage(byte[] body) throws Exception {
// 模拟解析错误
if (body == null) {
throw new IllegalArgumentException("Message body is null");
}
return new String(body);
}
};
// 添加监听器
try {
container.addMessageListener(listener, new ChannelTopic(channelName));
listeners.put(channelName, listener);
} catch (Exception e) {
// Redis 连接异常
result.setErrorResult("Failed to subscribe: " + e.getMessage());
}
// 处理异步异常
result.onError(throwable -> {
System.err.println("Async error for channel " + channelName + ": " + throwable.getMessage());
releaseResource(channelName);
// 可选:设置默认错误响应
result.setErrorResult("Error: " + throwable.getMessage());
});
// 清理订阅
result.onCompletion(() -> {
log.info("Async complete for channel " + channelName);
releaseResource(channelName);
});
result.onTimeout(() -> {
log.info("Async timed out for channel " + channelName);
releaseResource(channelName);
});
return result;
}
private void releaseResource(String channelName) {
deferredResults.remove(channelName);
MessageListener l = listeners.remove(channelName);
if (l != null) {
container.removeMessageListener(l);
}
}
@PostMapping("/publish/{channel}")
public String publish(@PathVariable String channel, @RequestBody String message) {
redisTemplate2.convertAndSend("channel:" + channel, message);
return "Published to channel: " + channel;
}
}
步骤流程
c) 单节点简单方案。使用spring event
只涉及核心代码
@RestController
public class AsyncEventController {
private final ApplicationEventPublisher eventPublisher;
private final Map<String, DeferredResult<String>> deferredResults = new ConcurrentHashMap<>();
public AsyncEventController(ApplicationEventPublisher eventPublisher) {
this.eventPublisher = eventPublisher;
}
// 异步请求
@GetMapping("/async/event/{id}")
public DeferredResult<String> asyncRequest(@PathVariable String id) {
DeferredResult<String> result = new DeferredResult<>(30000L, "Timeout");
deferredResults.put(id, result);
// 模拟异步任务,发布事件
eventPublisher.publishEvent(new CustomEvent(id, "Processed data for " + id));
result.onCompletion(() -> deferredResults.remove(id));
result.onTimeout(() -> deferredResults.remove(id));
result.onError(throwable -> {
System.err.println("Error for " + id + ": " + throwable.getMessage());
deferredResults.remove(id);
});
return result;
}
// 事件监听器
@Async
@EventListener
public void handleEvent(CustomEvent event) {
DeferredResult<String> result = deferredResults.remove(event.getId());
if (result != null) {
result.setResult(event.getData());
}
}
}
// 自定义事件类
class CustomEvent extends ApplicationEvent {
private final String id;
private final String data;
public CustomEvent(String id, String data) {
super(id);
this.id = id;
this.data = data;
}
public String getId() {
return id;
}
public String getData() {
return data;
}
}
c.1 ) 使用kafka、rockmq等消息队列监听实现。实现类似于spring event,此时代码略。
这里有个非常重要的问题,如果使用的是kafka监听事件,但是节点是多节点,如何保证接收到的事件所在的节点是发起ReferredResult回调的节点。
我们知道kafka监听事件的时候如果是非广播模式的话,那么消费的信息可能在任一节点中,如何保证消费的数据是在一个节点上的呢?可以使用如下的技术方方案,通过 nodeID与lisenterId进行关联,消费到的时候不属于当前节点,那么转发请求到指定节点。
@KafkaListener(topics = "response-topic", groupId = "my-group")
public void receiveMessage(String message, String key) {
// 解析消息,格式为 nodeId:message
String[] parts = message.split(":", 2);
String targetNodeId = parts[0];
String data = parts[1];
if (targetNodeId.equals(nodeId)) {
// 当前节点处理
DeferredResult<String> result = deferredResults.remove(key);
if (result != null) {
result.setResult(data);
}
requestNodeMap.remove(key);
} else {
// 转发到目标节点(假设通过 HTTP)
forwardToNode(targetNodeId, key, data);
}
}
private void forwardToNode(String targetNodeId, String requestId, String data) {
// 假设通过 HTTP 转发到目标节点
// 示例:RestTemplate 调用目标节点的 /internal/callback/{requestId}
// 实际实现需要节点地址映射(如通过服务发现)
// restTemplate.postForObject("http://" + targetNodeId + "/internal/callback/" + requestId, data, String.class);
System.out.println("Forwarding to node: " + targetNodeId + ", requestId: " + requestId + ", data: " + data);
}
节点标识 + 转发:通过 HTTP 或 Kafka 转发消息,灵活但有额外开销。
那么在多节点环境中,使用 Kafka 监听事件并触发 DeferredResult 延迟结果 回调,需要解决消息到正确节点的路由问题,还有其他的两种方案:
Kafka 分区分配:通过分区键将消息路由到目标节点,效率最高。
共享存储:使用 Redis 或数据库存储请求和节点映射,简单可靠。
方案可能还有更多,比如使用zookeep去做,那么方案很多,适合自己的才是最好的。