import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader , Dataset
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
torch.manual_seed(42)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
train_dataset = datasets.MNIST(
root='./data',
train=True,
download=True,
transform=transform
)
test_dataset = datasets.MNIST(
root='./data',
train=False,
transform=transform
)
sample_idx = torch.randint(0, len(train_dataset), size=(1,)).item()
image, label = train_dataset[sample_idx]
def imshow(img):
img = img* 0.3081 + 0.1307
npimg= img.numpy()
plt.imshow(npimg[0], cmap='gray')
plt.show()
print(f'Label:{label}')
imshow(image)
import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
torch.manual_seed(42)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
trainset = torchvision.datasets.CIFAR10(
root='./data',
train=True,
download=True,
transform=transform
)
trainloader = torch.utils.data.DataLoader(
trainset,
batch_size=4,
shuffle=True
)
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck')
sample_idx = torch.randint(0, len(trainset), size=(1,)).item()
image, label = trainset[sample_idx]
print(f"图像形状: {image.shape}")
print(f"图像类别: {classes[label]}")
def imshow(img):
img = img / 2 + 0.5
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.axis('off')
plt.show()
imshow(image)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
import matplotlib.pyplot as plt
train_dataset = datasets.MNIST(
root='./data',
train=True,
download=True,
transform=transform
)
test_dataset = datasets.MNIST(
root='./data',
train=False,
transform=transform
)
class MLP(nn.Module):
def __init__(self):
super(MLP, self).__init__()
self.flatten = nn.Flatten()
self.layer1 = nn.Linear(784, 128)
self.relu = nn.ReLU()
self.layer2 = nn.Linear(128, 10)
def forward(self, x):
x = self.flatten(x)
x = self.layer1(x)
x = self.relu(x)
x = self.layer2(x)
return x
model = MLP()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
from torchsummary import summary
print("\n模型结构信息:")
summary(model, input_size=(1, 28, 28))
class MLP(nn.Module):
def __init__(self, input_size=3072, hidden_size=128, num_classes=10):
super(MLP, self).__init__()
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, num_classes)
def forward(self, x):
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
return x
model = MLP()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
from torchsummary import summary
print("\n模型结构信息:")
summary(model, input_size=(3, 32, 32))
class MLP(nn.Module):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten()
self.layer1 = nn.Linear(784, 128)
self.relu = nn.ReLU()
self.layer2 = nn.Linear(128, 10)
def forward(self, x):
x = self.flatten(x)
x = self.layer1(x)
x = self.relu(x)
x = self.layer2(x)
return x
from torch.utils.data import DataLoader
train_loader = DataLoader(
dataset=train_dataset,
batch_size=64,
shuffle=True
)
test_loader = DataLoader(
dataset=test_dataset,
batch_size=1000,
shuffle=False
)