偏微分方程通解求解2

发布于:2025-06-24 ⋅ 阅读:(18) ⋅ 点赞:(0)

题目

求下列方程的通解:
{ u x y = u x u y u − 1 ; u x y = u x u y ; u x y = u x u y u u 2 + 1 ; \begin{cases} u_{xy} = u_x u_y u^{-1}; \\ u_{xy} = u_x u_y; \\ u_{xy} = \dfrac{u_x u_y u}{u^2 + 1}; \end{cases} uxy=uxuyu1;uxy=uxuy;uxy=u2+1uxuyu;

解答

下面分别求解每个方程。

方程 1: u x y = u x u y u − 1 u_{xy} = u_x u_y u^{-1} uxy=uxuyu1

该方程可改写为 u x y = u x u y u u_{xy} = \frac{u_x u_y}{u} uxy=uuxuy
v = ln ⁡ u v = \ln u v=lnu,则:
v x = u x u , v y = u y u , v x y = ∂ ∂ y ( u x u ) = u x y u − u x u y u 2 . v_x = \frac{u_x}{u}, \quad v_y = \frac{u_y}{u}, \quad v_{xy} = \frac{\partial}{\partial y} \left( \frac{u_x}{u} \right) = \frac{u_{xy} u - u_x u_y}{u^2}. vx=uux,vy=uuy,vxy=y(uux)=u2uxyuuxuy.
代入原方程 u x y = u x u y u u_{xy} = \frac{u_x u_y}{u} uxy=uuxuy,得:
v x y = ( u x u y u ) u − u x u y u 2 = u x u y − u x u y u 2 = 0. v_{xy} = \frac{ \left( \frac{u_x u_y}{u} \right) u - u_x u_y }{u^2} = \frac{u_x u_y - u_x u_y}{u^2} = 0. vxy=u2(uuxuy)uuxuy=u2uxuyuxuy=0.
因此, v x y = 0 v_{xy} = 0 vxy=0,其通解为 v ( x , y ) = f ( x ) + g ( y ) v(x, y) = f(x) + g(y) v(x,y)=f(x)+g(y),其中 f ( x ) f(x) f(x) g ( y ) g(y) g(y) 为任意可微函数。
还原变量, ln ⁡ u = f ( x ) + g ( y ) \ln u = f(x) + g(y) lnu=f(x)+g(y),即:
u ( x , y ) = e f ( x ) + g ( y ) = a ( x ) b ( y ) , u(x, y) = e^{f(x) + g(y)} = a(x) b(y), u(x,y)=ef(x)+g(y)=a(x)b(y),
其中 a ( x ) = e f ( x ) a(x) = e^{f(x)} a(x)=ef(x) b ( y ) = e g ( y ) b(y) = e^{g(y)} b(y)=eg(y) 为任意可微函数。
验证:若 u = a ( x ) b ( y ) u = a(x) b(y) u=a(x)b(y),则 u x = a ′ b u_x = a' b ux=ab u y = a b ′ u_y = a b' uy=ab u x y = a ′ b ′ u_{xy} = a' b' uxy=ab,而右边 u x u y u = ( a ′ b ) ( a b ′ ) a b = a ′ b ′ \frac{u_x u_y}{u} = \frac{(a' b)(a b')}{a b} = a' b'


网站公告

今日签到

点亮在社区的每一天
去签到