环境:
AI-Sphere-Butler
VBCABLE2.1.58
Win10专业版
豆包桌面版1.47.4
ubuntu22.04
英伟达4070ti 12G
python3.10
问题描述:
AI-Sphere-Butler之如何将豆包桌面版对接到AI全能管家~新玩法(一)
聊天视频:
AI真人版豆包来了,AI全能管家新玩法。
解决方案:
1.先安装VBCABLE2.1.58工具,采集豆包音频
“VBCABLE_Driver_Pack45win10” 指的是适用于 Windows 10 系统的 VBCABLE 驱动程序包,版本号可能是 45 。“VBCABLE” 可能是该驱动相关的产品或技术名称,“Driver_Pack” 明确是驱动程序包,而 “win10” 表明其适用的操作系统为 Windows 10 。例如,可能是一种虚拟音频电缆相关的驱动包,用于在 Windows 10 系统上实现特定音频功能。
下载完软件安装x64版
继续安装
2.打开电脑声音设置找到应用音量和设备首选项
3.将豆包程序的输出设备选择CABLEInput
4.自行安装python和安装依赖:
pip install flask flask-sockets gevent gevent-websocket
5.编写采集豆包声音客户端
Collection.py文件内容:
import asyncio
import sounddevice as sd
import websockets
import numpy as np
import signal
import threading
import time
from collections import deque
INPUT_RATE = 16000
CHANNELS = 1
FRAME_SIZE = 640
WS_URL = "ws://192.168.1.4:8020"#websockets服务地址
SILENCE_THRESHOLD = 1000
stop_event = threading.Event()
signal.signal(signal.SIGINT, lambda s, f: stop_event.set())
class AudioBuffer:
def __init__(self, max_frames=20):
self.buffer = deque(maxlen=max_frames)
self.lock = threading.Lock()
def put(self, frame_bytes):
with self.lock:
if len(self.buffer) == self.buffer.maxlen:
self.buffer.popleft()
print("[BUF] Buffer full, dropping oldest frame")
self.buffer.append(frame_bytes)
def get_all(self):
with self.lock:
frames = list(self.buffer)
self.buffer.clear()
return frames
def size(self):
with self.lock:
return len(self.buffer)
def is_voice(data_np):
energy = np.mean(data_np.astype(np.float32) ** 2)
return energy > SILENCE_THRESHOLD
def audio_callback(indata, frames, time_info, status, audio_buffer):
if status:
print(f"[CAP] Warning: {status}")
audio_np = indata[:, 0]
ts = time.time()
if is_voice(audio_np):
frame = audio_np.tobytes()
#print(f"[CAP] Voice frame captured at {ts:.3f}s, energy sufficient")
else:
frame = (np.zeros_like(audio_np)).tobytes()
#print(f"[CAP] Silence frame at {ts:.3f}s")
audio_buffer.put(frame)
async def sender(ws, audio_buffer):
while not stop_event.is_set():
frames = audio_buffer.get_all()
if not frames:
await asyncio.sleep(0.005)
continue
for frame in frames:
try:
await ws.send(frame)
#print(f"[SND] Sent frame size={len(frame)} at {time.time():.3f}s, buffer size={audio_buffer.size()}")
except Exception as e:
print(f"[SND] Send error: {e}")
stop_event.set()
return
async def capture_and_send(ws):
audio_buffer = AudioBuffer(20)
device_index = None
devices = sd.query_devices()
for i, d in enumerate(devices):
if "CABLE" in d['name'] and d['max_input_channels'] >= CHANNELS:
device_index = i
break
if device_index is None:
device_index = sd.default.device[0]
print(f"[SYS] Using device #{device_index}: {devices[device_index]['name']}")
send_task = asyncio.create_task(sender(ws, audio_buffer))
with sd.InputStream(samplerate=INPUT_RATE,
device=device_index,
channels=CHANNELS,
dtype='int16',
blocksize=FRAME_SIZE,
callback=lambda indata, frames, time_info, status:
audio_callback(indata, frames, time_info, status, audio_buffer)):
print("[SYS] Recording started.")
while not stop_event.is_set():
await asyncio.sleep(0.1)
send_task.cancel()
try:
await send_task
except asyncio.CancelledError:
pass
print("[SYS] Recording stopped.")
async def main():
print(f"[SYS] Connecting to {WS_URL}")
try:
async with websockets.connect(WS_URL) as ws:
print("[SYS] Connected.")
await capture_and_send(ws)
except Exception as e:
print(f"[ERR] Connection error: {e}")
if __name__ == '__main__':
asyncio.run(main())
6.主程序引入模块文件websocket_service.py:
AI-Sphere-Butler\core\server\virtual_human\websocket_service.py
import asyncio
import uuid
import websockets
import multiprocessing
import queue
MAX_QUEUE_SIZE = 10
def enqueue_audio_data(audio_queue, data):
try:
audio_queue.put_nowait(data)
except queue.Full:
try:
discarded = audio_queue.get_nowait()
print("[WSrv] 丢弃过旧音频包,防止积压")
except queue.Empty:
pass
try:
audio_queue.put_nowait(data)
except queue.Full:
# print("[WSrv] 队列满,丢弃当前音频包")
pass
async def audio_handler(websocket, audio_queue: multiprocessing.Queue):
session_id = str(uuid.uuid4())
# print(f"[WSrv] Session {session_id} connected")
try:
async for raw in websocket:
if isinstance(raw, (bytes, bytearray)):
enqueue_audio_data(audio_queue, (session_id, raw))
# print(f"[WSrv] Queued {len(raw)} bytes from {session_id}")
else:
# print(f"[WSrv] Ignored non-binary message from {session_id}")
pass
except websockets.exceptions.ConnectionClosed:
pass
finally:
# print(f"[WSrv] Session {session_id} disconnected")
pass
async def run_server(audio_queue: multiprocessing.Queue, host='0.0.0.0', port=8020):
async def handler(websocket):
await audio_handler(websocket, audio_queue)
server = await websockets.serve(handler, host, port)
# print(f"[WSrv] Listening on ws://{host}:{port}")
await asyncio.Future()
if __name__ == "__main__":
q = multiprocessing.Queue(maxsize=MAX_QUEUE_SIZE)
asyncio.run(run_server(q))
7.运行采集客户端和AI-Sphere-Butler服务
8.这样就可以和豆包聊天,驱动AI全能管家数字人说话了