DAY 42 Grad-CAM与Hook函数

发布于:2025-06-27 ⋅ 阅读:(18) ⋅ 点赞:(0)

DAY 42 Grad-CAM与Hook函数

1.回调函数
def handle_result(result):
    print(f'计算结果是: {result}')

def calculate(a, b, callback):
    result = a + b
    callback(result)

calculate(3, 5, handle_result)

计算结果是: 8
def handle_result(result):
    print(f'计算结果是: {result}')

def with_callback(callback):
    def decorator(func):
        def wrapper(a, b):
            result = func(a, b)
            callback(result)
            return result
        return wrapper
    return decorator

@with_callback(handle_result)
def calculate(a, b):
    return a + b

calculate(3, 5)

计算结果是: 8





8
2.lambda函数
square = lambda x: x ** 2

print(square(5))

25
3.hook函数的模块钩子和张量钩子
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt

torch.manual_seed(42)
np.random.seed(42)

import torch
import torch.nn as nn

class SimpleModel(nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.conv = nn.Conv2d(1, 2, kernel_size=3, padding=1)
        self.relu = nn.ReLU()
        self.fc = nn.Linear(2 * 4 * 4, 10)

    def forward(self, x):
        x = self.conv(x)
        x = self.relu(x)
        x = x.view(-1, 2 * 4 * 4)
        x = self.fc(x)
        return x

model = SimpleModel()
conv_outputs = []

def forward_hook(module, input, output):
    print(f'钩子被调用!模块类型: {type(module)}')
    print(f'输入形状: {input[0].shape}')
    print(f'输出形状: {output.shape}')
    conv_outputs.append(output.detach())

hook_handle = model.conv.register_forward_hook(forward_hook)
x = torch.randn(1, 1, 4, 4)
output = model(x)
hook_handle.remove()

钩子被调用!模块类型: <class 'torch.nn.modules.conv.Conv2d'>
输入形状: torch.Size([1, 1, 4, 4])
输出形状: torch.Size([1, 2, 4, 4])
import warnings
import matplotlib.pyplot as plt

warnings.filterwarnings('ignore')
plt.rcParams['font.family'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

if conv_outputs:
    plt.figure(figsize=(10, 5))
    plt.subplot(1, 3, 1)
    plt.title('输入图像')
    plt.imshow(x[0, 0].detach().numpy(), cmap='gray')
    plt.subplot(1, 3, 2)
    plt.title('卷积核1输出')
    plt.imshow(conv_outputs[0][0, 0].detach().numpy(), cmap='gray')
    plt.subplot(1, 3, 3)
    plt.title('卷积核2输出')
    plt.imshow(conv_outputs[0][0, 1].detach().numpy(), cmap='gray')
    plt.tight_layout()
    plt.show()

在这里插入图片描述

conv_gradients = []

def backward_hook(module, grad_input, grad_output):
    print(f'反向钩子被调用!模块类型: {type(module)}')
    print(f'输入梯度数量: {len(grad_input)}')
    print(f'输出梯度数量: {len(grad_output)}')
    conv_gradients.append((grad_input, grad_output))

hook_handle = model.conv.register_backward_hook(backward_hook)
x = torch.randn(1, 1, 4, 4, requires_grad=True)
output = model(x)
loss = output.sum()
loss.backward()
hook_handle.remove()

反向钩子被调用!模块类型: <class 'torch.nn.modules.conv.Conv2d'>
输入梯度数量: 3
输出梯度数量: 1
x = torch.tensor([2.0], requires_grad=True)
y = x ** 2
z = y ** 3

def tensor_hook(grad):
    print(f'原始梯度: {grad}')
    return grad / 2

hook_handle = y.register_hook(tensor_hook)
z.backward()
print(f'x的梯度: {x.grad}')
hook_handle.remove()

原始梯度: tensor([48.])
x的梯度: tensor([96.])
4.Grad-CAM的示例
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image

torch.manual_seed(42)
np.random.seed(42)

transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

testset = torchvision.datasets.CIFAR10(
    root='./data', 
    train=False,
    download=True, 
    transform=transform
)

classes = ('飞机', '汽车', '鸟', '猫', '鹿', '狗', '青蛙', '马', '船', '卡车')

class SimpleCNN(nn.Module):
    def __init__(self):
        super(SimpleCNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
        self.pool = nn.MaxPool2d(2, 2)
        self.fc1 = nn.Linear(128 * 4 * 4, 512)
        self.fc2 = nn.Linear(512, 10)
        
    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = self.pool(F.relu(self.conv3(x)))
        x = x.view(-1, 128 * 4 * 4)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x

model = SimpleCNN()
print('模型已创建')
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model = model.to(device)

def train_model(model, epochs=1):
    trainset = torchvision.datasets.CIFAR10(
        root='./data', 
        train=True,
        download=True, 
        transform=transform
    )
    trainloader = torch.utils.data.DataLoader(
        trainset, 
        batch_size=64,
        shuffle=True, 
        num_workers=2
    )
    
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
    
    for epoch in range(epochs):
        running_loss = 0.0
        for i, data in enumerate(trainloader, 0):
            inputs, labels = data
            inputs, labels = inputs.to(device), labels.to(device)
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            running_loss += loss.item()
            if i % 100 == 99:
                print(f'[{epoch + 1}, {i + 1}] 损失: {running_loss / 100:.3f}')
                running_loss = 0.0
    
    print('训练完成')

try:
    model.load_state_dict(torch.load('cifar10_cnn.pth'))
    print('已加载预训练模型')
except:
    print('无法加载预训练模型, 使用未训练模型或训练新模型')
    train_model(model, epochs=1)
    torch.save(model.state_dict(), 'cifar10_cnn.pth')

model.eval()

class GradCAM:
    def __init__(self, model, target_layer):
        self.model = model
        self.target_layer = target_layer
        self.gradients = None
        self.activations = None
        self.register_hooks()
        
    def register_hooks(self):
        def forward_hook(module, input, output):
            self.activations = output.detach()
        
        def backward_hook(module, grad_input, grad_output):
            self.gradients = grad_output[0].detach()
        
        self.target_layer.register_forward_hook(forward_hook)
        self.target_layer.register_backward_hook(backward_hook)
    
    def generate_cam(self, input_image, target_class=None):
        model_output = self.model(input_image)
        
        if target_class is None:
            target_class = torch.argmax(model_output, dim=1).item()
        
        self.model.zero_grad()
        one_hot = torch.zeros_like(model_output)
        one_hot[0, target_class] = 1
        model_output.backward(gradient=one_hot)
        gradients = self.gradients
        activations = self.activations
        weights = torch.mean(gradients, dim=(2, 3), keepdim=True)
        cam = torch.sum(weights * activations, dim=1, keepdim=True)
        cam = F.relu(cam)
        cam = F.interpolate(cam, size=(32, 32), mode='bilinear', align_corners=False)
        cam = cam - cam.min()
        cam = cam / cam.max() if cam.max() > 0 else cam
        
        return cam.cpu().squeeze().numpy(), target_class

Files already downloaded and verified
模型已创建
已加载预训练模型
import warnings
import matplotlib.pyplot as plt

warnings.filterwarnings('ignore')
plt.rcParams['font.family'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

idx = 102
image, label = testset[idx]
print(f'选择的图像类别: {classes[label]}')

def tensor_to_np(tensor):
    img = tensor.cpu().numpy().transpose(1, 2, 0)
    mean = np.array([0.5, 0.5, 0.5])
    std = np.array([0.5, 0.5, 0.5])
    img = std * img + mean
    img = np.clip(img, 0, 1)
    return img

input_tensor = image.unsqueeze(0).to(device)
grad_cam = GradCAM(model, model.conv3)
heatmap, pred_class = grad_cam.generate_cam(input_tensor)

plt.figure(figsize=(12, 4))
plt.subplot(1, 3, 1)
plt.imshow(tensor_to_np(image))
plt.title(f'原始图像: {classes[label]}')
plt.axis('off')

plt.subplot(1, 3, 2)
plt.imshow(heatmap, cmap='jet')
plt.title(f'Grad-CAM热力图: {classes[pred_class]}')
plt.axis('off')

plt.subplot(1, 3, 3)
img = tensor_to_np(image)
heatmap_resized = np.uint8(255 * heatmap)
heatmap_colored = plt.cm.jet(heatmap_resized)[:, :, :3]
superimposed_img = heatmap_colored * 0.4 + img * 0.6
plt.imshow(superimposed_img)
plt.title('叠加热力图')
plt.axis('off')

plt.tight_layout()
plt.savefig('grad_cam_result.png')
plt.show()

选择的图像类别: 青蛙

在这里插入图片描述

作业:理解下今天的代码即可

@浙大疏锦行


网站公告

今日签到

点亮在社区的每一天
去签到