环境准备
手机
测试手机型号:Redmi K60 Pro
处理器:第二代骁龙8移动--8gen2
运行内存:8.0GB ,LPDDR5X-8400,67.0 GB/s
摄像头:前置16MP+后置50MP+8MP+2MP
AI算力:NPU 48Tops INT8 && GPU 1536ALU x 2 x 680MHz = 2.089 TFLOPS
提示:任意手机均可以,性能越好的手机速度越快
软件
APP:AidLux 2.0
系统环境:Ubuntu 20.04.3 LTS
提示:AidLux登录后代码运行更流畅,在代码运行时保持AidLux APP在前台运行,避免代码运行过程中被系统回收进程,另外屏幕保持常亮,一般息屏后一段时间,手机系统会进入休眠状态,如需长驻后台需要给APP权限。
算法Demo
代码功能详解
这段代码通过AidLlite推理引擎实现了一个基于计算机视觉的实时人脸美化应用,主要结合了人脸检测、关键点定位、图像变换和融合等技术。下面从整体架构和核心功能两方面进行解析:
整体架构
代码主要由以下几个部分组成:
- 人脸检测模块:使用 BlazeFace 模型识别视频中的人脸
- 关键点检测模块:定位人脸的 468 个关键点
- 人脸变换模块:通过仿射变换和三角剖分实现人脸对齐
- 图像融合模块:将源人脸与目标人脸无缝融合
- 用户交互模块:提供 UI 界面选择不同的目标人脸图像
核心功能解析
- 人脸检测与预处理
# 使用BlazeFace模型进行人脸检测
def blazeface(raw_output_a, raw_output_b, anchors):
# 解码边界框和分数
detections = net.tensors_to_detections(raw_box_tensor, raw_score_tensor, anchors)
# 非极大值抑制过滤重叠检测
filtered_detections = net.weighted_non_max_suppression(detections[i])
通过 TFLite 模型face_detection_front.tflite
检测人脸,返回边界框和关键点坐标,再通过非极大值抑制优化检测结果。
- 人脸关键点定位
# 检测人脸的468个关键点
model_path1 = "models/face_landmark.tflite"
mesh = fast_interpreter1.get_output_tensor(0)
mesh = mesh.reshape(468, 3) / 192
使用face_landmark.tflite
模型定位眼睛、嘴巴、鼻子等关键部位的坐标,为后续人脸变换提供基础。
- 人脸变换与融合
# 基于Delaunay三角剖分的人脸变换
def warpTriangle(img1, img2, t1, t2):
# 计算仿射变换矩阵
warpMat = cv2.getAffineTransform(np.float32(srcTri), np.float32(dstTri))
# 应用变换并融合
dst = cv2.warpAffine(src, warpMat, (size[0], size[1]))
将人脸区域划分为三角形网格,对每个三角形应用仿射变换,再通过cv2.seamlessClone
实现无缝融合。
- 用户交互界面
# 创建UI界面选择目标人脸
class MyApp(App):
def main(self):
# 创建摄像头组件和图像选择按钮
self.img1 = Image('/res:' + back_img_path[0], height=80, margin='10px')
self.img1.onclick.do(self.on_img1_clicked)
提供图形界面让用户选择不同的目标人脸图像,点击图片即可切换。
模型作用分析
代码中使用了两个关键的 TFLite 模型:
face_detection_front.tflite
- 类型:人脸检测模型
- 作用:在输入图像中定位人脸位置,输出边界框和 6 个关键点坐标 (眼睛、鼻子、嘴角等)
- 技术特点:
- 轻量级设计,适合实时应用
- 使用锚点机制检测不同尺度的人脸
- 输出包括边界框坐标和关键点位置
face_landmark.tflite
- 类型:人脸关键点检测模型
- 作用:检测人脸的 468 个精确关键点,覆盖眉毛、眼睛、鼻子、嘴巴和脸部轮廓
- 技术特点:
- 输出 468 个 3D 坐标点,提供精细的人脸形状描述
- 用于人脸对齐、表情分析等高级应用
- 模型输入为 192x192 的图像,输出为 468 个 3D 坐标
应用场景
该人脸变换和美化应用适用于以下场景:
娱乐与社交媒体
- 短视频特效制作
- 社交平台实时滤镜
- 趣味照片编辑工具
影视制作与广告
- 电影特效中的人脸替换
- 广告中实现明星脸替换效果
- 虚拟主播的面部表情迁移
教育与演示
- 计算机视觉原理教学演示
- 人脸图像处理技术展示
- 机器学习模型应用案例
特殊行业应用
- 安防领域的人脸模拟
- 虚拟现实中的面部表情同步
- 医学领域的面部畸形模拟与修复预览
技术特点与优势
- 实时性:通过轻量级 TFLite 模型和优化的计算流程,实现实时人脸变换
- 鲁棒性:使用 Delaunay 三角剖分和无缝克隆技术,确保不同表情和角度下的效果
- 易用性:提供图形界面,用户可轻松选择不同的目标人脸
- 可扩展性:模型与业务逻辑分离,便于替换更高精度的模型或添加新功能
该应用结合了计算机视觉和机器学习技术,展示了现代人脸处理的核心流程,具有较强的实用性和拓展空间。
示例代码
import cv2
import math
import sys
import numpy as np
import os
import subprocess
import time
from cvs import *
import aidlite
# 背景图像路径列表
back_img_path = ('models/rs.jpeg', 'models/wy.jpeg', 'models/zyx.jpeg', 'models/monkey.jpg', 'models/star2.jpg', 'models/star1.jpg', 'models/star3.jpg', 'models/star4.jpg')
# 读取第一张背景图像
faceimg = cv2.imread(back_img_path[0])
mod = -1
bfirstframe = True
# 从文件中读取关键点
def readPoints(path):
# 创建一个关键点数组
points = []
# 打开文件读取关键点
with open(path) as file:
for line in file:
x, y = line.split()
points.append((int(x), int(y)))
return points
# 应用仿射变换
def applyAffineTransform(src, srcTri, dstTri, size):
# 计算仿射变换矩阵
warpMat = cv2.getAffineTransform(np.float32(srcTri), np.float32(dstTri))
# 应用仿射变换到源图像
dst = cv2.warpAffine(src, warpMat, (size[0], size[1]), None, flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101)
return dst
# 检查点是否在矩形内
def rectContains(rect, point):
if point[0] < rect[0]:
return False
elif point[1] < rect[1]:
return False
elif point[0] > rect[0] + rect[2]:
return False
elif point[1] > rect[1] + rect[3]:
return False
return True
# 计算Delaunay三角形
def calculateDelaunayTriangles(rect, points):
# 创建Subdiv2D对象
subdiv = cv2.Subdiv2D(rect)
ttp = None
# 将关键点插入到Subdiv2D对象中
for p in points:
try:
subdiv.insert(p)
ttp = p
except:
subdiv.insert(ttp)
continue
# 获取三角形列表
triangleList = subdiv.getTriangleList()
delaunayTri = []
pt = []
for t in triangleList:
pt.append((t[0], t[1]))
pt.append((t[2], t[3]))
pt.append((t[4], t[5]))
pt1 = (t[0], t[1])
pt2 = (t[2], t[3])
pt3 = (t[4], t[5])
# 检查三角形的三个顶点是否都在矩形内
if rectContains(rect, pt1) and rectContains(rect, pt2) and rectContains(rect, pt3):
ind = []
# 获取关键点的索引
for j in range(0, 3):
for k in range(0, len(points)):
if (abs(pt[j][0] - points[k][0]) < 1.0 and abs(pt[j][1] - points[k][1]) < 1.0):
ind.append(k)
# 如果索引列表长度为3,则将其添加到Delaunay三角形列表中
if len(ind) == 3:
delaunayTri.append((ind[0], ind[1], ind[2]))
pt = []
return delaunayTri
# 对三角形区域进行变形和融合
def warpTriangle(img1, img2, t1, t2):
# 找到每个三角形的边界矩形
r1 = cv2.boundingRect(np.float32([t1]))
r2 = cv2.boundingRect(np.float32([t2]))
# 偏移关键点
t1Rect = []
t2Rect = []
t2RectInt = []
for i in range(0, 3):
t1Rect.append(((t1[i][0] - r1[0]), (t1[i][1] - r1[1])))
t2Rect.append(((t2[i][0] - r2[0]), (t2[i][1] - r2[1])))
t2RectInt.append(((t2[i][0] - r2[0]), (t2[i][1] - r2[1])))
# 创建掩码
mask = np.zeros((r2[3], r2[2], 3), dtype=np.float32)
cv2.fillConvexPoly(mask, np.int32(t2RectInt), (1.0, 1.0, 1.0), 16, 0)
# 对小矩形区域应用仿射变换
img1Rect = img1[r1[1]:r1[1] + r1[3], r1[0]:r1[0] + r1[2]]
size = (r2[2], r2[3])
img2Rect = applyAffineTransform(img1Rect, t1Rect, t2Rect, size)
img2Rect = img2Rect * mask
# 将变形后的三角形区域复制到输出图像中
img2[r2[1]:r2[1] + r2[3], r2[0]:r2[0] + r2[2]] = img2[r2[1]:r2[1] + r2[3], r2[0]:r2[0] + r2[2]] * ((1.0, 1.0, 1.0) - mask)
img2[r2[1]:r2[1] + r2[3], r2[0]:r2[0] + r2[2]] = img2[r2[1]:r2[1] + r2[3], r2[0]:r2[0] + r2[2]] + img2Rect
# 人脸变换函数
def faceswap(points1, points2, img1, img2):
img1Warped = np.copy(img2)
# 找到凸包
hull1 = []
hull2 = []
hullIndex = cv2.convexHull(np.array(points2), returnPoints=False)
for i in range(0, len(hullIndex)):
hull1.append(points1[int(hullIndex[i])])
hull2.append(points2[int(hullIndex[i])])
# 计算凸包关键点的Delaunay三角形
sizeImg2 = img2.shape
rect = (0, 0, sizeImg2[1], sizeImg2[0])
dt = calculateDelaunayTriangles(rect, hull2)
if len(dt) == 0:
quit()
# 对Delaunay三角形应用仿射变换
for i in range(0, len(dt)):
t1 = []
t2 = []
for j in range(0, 3):
t1.append(hull1[dt[i][j]])
t2.append(hull2[dt[i][j]])
warpTriangle(img1, img1Warped, t1, t2)
# 计算掩码
hull8U = []
for i in range(0, len(hull2)):
hull8U.append((hull2[i][0], hull2[i][1]))
mask = np.zeros(img2.shape, dtype=img2.dtype)
cv2.fillConvexPoly(mask, np.int32(hull8U), (255, 255, 255))
r = cv2.boundingRect(np.float32([hull2]))
center = ((r[0] + int(r[2] / 2), r[1] + int(r[3] / 2)))
# 无缝克隆
try:
output = cv2.seamlessClone(np.uint8(img1Warped), img2, mask, center, cv2.NORMAL_CLONE)
except:
return None
return output
# 对图像进行预处理,用于TFLite模型
def preprocess_image_for_tflite32(image, model_image_size=192):
# 将图像从BGR颜色空间转换为RGB颜色空间
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# 调整图像大小
image = cv2.resize(image, (model_image_size, model_image_size))
# 添加一个维度
image = np.expand_dims(image, axis=0)
# 归一化处理
image = (2.0 / 255.0) * image - 1.0
# 将图像数据类型转换为float32
image = image.astype('float32')
return image
# 对图像进行填充和预处理
def preprocess_img_pad(img, image_size=128):
# 获取图像的形状
shape = np.r_[img.shape]
# 计算需要填充的像素数
pad_all = (shape.max() - shape[:2]).astype('uint32')
pad = pad_all // 2
# 对原始图像进行填充
img_pad_ori = np.pad(
img,
((pad[0], pad_all[0] - pad[0]), (pad[1], pad_all[1] - pad[1]), (0, 0)),
mode='constant')
# 将图像从BGR颜色空间转换为RGB颜色空间
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# 对RGB图像进行填充
img_pad = np.pad(
img,
((pad[0], pad_all[0] - pad[0]), (pad[1], pad_all[1] - pad[1]), (0, 0)),
mode='constant')
# 调整图像大小
img_small = cv2.resize(img_pad, (image_size, image_size))
# 添加一个维度
img_small = np.expand_dims(img_small, axis=0)
# 归一化处理
img_small = (2.0 / 255.0) * img_small - 1.0
# 将图像数据类型转换为float32
img_small = img_small.astype('float32')
return img_pad_ori, img_small, pad
# 绘制检测到的人脸框
def plot_detections(img, detections, with_keypoints=True):
output_img = img
print(img.shape)
x_min = 0
x_max = 0
y_min = 0
y_max = 0
print("找到 %d 个人脸" % len(detections))
for i in range(len(detections)):
# 计算人脸框的坐标
ymin = detections[i][0] * img.shape[0]
xmin = detections[i][1] * img.shape[1]
ymax = detections[i][2] * img.shape[0]
xmax = detections[i][3] * img.shape[1]
w = int(xmax - xmin)
h = int(ymax - ymin)
h = max(w, h)
h = h * 1.5
x = (xmin + xmax) / 2.
y = (ymin + ymax) / 2.
xmin = x - h / 2.
xmax = x + h / 2.
ymin = y - h / 2. - 0.08 * h
ymax = y + h / 2. - 0.08 * h
x_min = int(xmin)
y_min = int(ymin)
x_max = int(xmax)
y_max = int(ymax)
p1 = (int(xmin), int(ymin))
p2 = (int(xmax), int(ymax))
# 绘制人脸框
cv2.rectangle(output_img, p1, p2, (0, 255, 255), 2, 1)
return x_min, y_min, x_max, y_max
# 绘制人脸网格
def draw_mesh(image, mesh, mark_size=2, line_width=1):
# 获取图像的大小
image_size = image.shape[0]
# 将归一化的网格坐标转换为图像坐标
mesh = mesh * image_size
# 绘制关键点
for point in mesh:
cv2.circle(image, (point[0], point[1]),
mark_size, (0, 255, 128), -1)
# 绘制眼睛轮廓
left_eye_contour = np.array([mesh[33][0:2],
mesh[7][0:2],
mesh[163][0:2],
mesh[144][0:2],
mesh[145][0:2],
mesh[153][0:2],
mesh[154][0:2],
mesh[155][0:2],
mesh[133][0:2],
mesh[173][0:2],
mesh[157][0:2],
mesh[158][0:2],
mesh[159][0:2],
mesh[160][0:2],
mesh[161][0:2],
mesh[246][0:2]]).astype(np.int32)
right_eye_contour = np.array([mesh[263][0:2],
mesh[249][0:2],
mesh[390][0:2],
mesh[373][0:2],
mesh[374][0:2],
mesh[380][0:2],
mesh[381][0:2],
mesh[382][0:2],
mesh[362][0:2],
mesh[398][0:2],
mesh[384][0:2],
mesh[385][0:2],
mesh[386][0:2],
mesh[387][0:2],
mesh[388][0:2],
mesh[466][0:2]]).astype(np.int32)
# 绘制眼睛轮廓线
cv2.polylines(image, [left_eye_contour, right_eye_contour], False,
(255, 255, 255), line_width, cv2.LINE_AA)
# 获取关键点
def getkeypoint(image, mesh, landmark_point):
# 获取图像的大小
image_size = image.shape[0]
# 将归一化的网格坐标转换为图像坐标
mesh = mesh * image_size
# 将关键点添加到列表中
for point in mesh:
landmark_point.append((point[0], point[1]))
return image
# 绘制关键点和面部特征线
def draw_landmarks(image, mesh, landmark_point):
# 获取图像的大小
image_size = image.shape[0]
# 将归一化的网格坐标转换为图像坐标
mesh = mesh * image_size
# 绘制关键点
for point in mesh:
landmark_point.append((point[0], point[1]))
cv2.circle(image, (point[0], point[1]), 2, (255, 255, 0), -1)
if len(landmark_point) > 0:
# 绘制左眉毛
cv2.line(image, landmark_point[55], landmark_point[65], (0, 0, 255), 2, -3)
cv2.line(image, landmark_point[65], landmark_point[52], (0, 0, 255), 2, -3)
cv2.line(image, landmark_point[52], landmark_point[53], (0, 0, 255), 2, -3)
cv2.line(image, landmark_point[53], landmark_point[46], (0, 0, 255), 2, -3)
# 绘制右眉毛
cv2.line(image, landmark_point[285], landmark_point[295], (0, 0, 255), 2)
cv2.line(image, landmark_point[295], landmark_point[282], (0, 0, 255), 2)
cv2.line(image, landmark_point[282], landmark_point[283], (0, 0, 255), 2)
cv2.line(image, landmark_point[283], landmark_point[276], (0, 0, 255), 2)
# 绘制左眼睛
cv2.line(image, landmark_point[133], landmark_point[173], (0, 0, 255), 2)
cv2.line(image, landmark_point[173], landmark_point[157], (0, 0, 255), 2)
cv2.line(image, landmark_point[157], landmark_point[158], (0, 0, 255), 2)
cv2.line(image, landmark_point[158], landmark_point[159], (0, 0, 255), 2)
cv2.line(image, landmark_point[159], landmark_point[160], (0, 0, 255), 2)
cv2.line(image, landmark_point[160], landmark_point[161], (0, 0, 255), 2)
cv2.line(image, landmark_point[161], landmark_point[246], (0, 0, 255), 2)
cv2.line(image, landmark_point[246], landmark_point[163], (0, 0, 255), 2)
cv2.line(image, landmark_point[163], landmark_point[144], (0, 0, 255), 2)
cv2.line(image, landmark_point[144], landmark_point[145], (0, 0, 255), 2)
cv2.line(image, landmark_point[145], landmark_point[153], (0, 0, 255), 2)
cv2.line(image, landmark_point[153], landmark_point[154], (0, 0, 255), 2)
cv2.line(image, landmark_point[154], landmark_point[155], (0, 0, 255), 2)
cv2.line(image, landmark_point[155], landmark_point[133], (0, 0, 255), 2)
# 绘制右眼睛
cv2.line(image, landmark_point[362], landmark_point[398], (0, 0, 255), 2)
cv2.line(image, landmark_point[398], landmark_point[384], (0, 0, 255), 2)
cv2.line(image, landmark_point[384], landmark_point[385], (0, 0, 255), 2)
cv2.line(image, landmark_point[385], landmark_point[386], (0, 0, 255), 2)
cv2.line(image, landmark_point[386], landmark_point[387], (0, 0, 255), 2)
cv2.line(image, landmark_point[387], landmark_point[388], (0, 0, 255), 2)
cv2.line(image, landmark_point[388], landmark_point[466], (0, 0, 255), 2)
cv2.line(image, landmark_point[466], landmark_point[390], (0, 0, 255), 2)
cv2.line(image, landmark_point[390], landmark_point[373], (0, 0, 255), 2)
cv2.line(image, landmark_point[373], landmark_point[374], (0, 0, 255), 2)
cv2.line(image, landmark_point[374], landmark_point[380], (0, 0, 255), 2)
cv2.line(image, landmark_point[380], landmark_point[381], (0, 0, 255), 2)
cv2.line(image, landmark_point[381], landmark_point[382], (0, 0, 255), 2)
cv2.line(image, landmark_point[382], landmark_point[362], (0, 0, 255), 2)
# 绘制嘴巴
cv2.line(image, landmark_point[308], landmark_point[415], (0, 0, 255), 2)
cv2.line(image, landmark_point[415], landmark_point[310], (0, 0, 255), 2)
cv2.line(image, landmark_point[310], landmark_point[311], (0, 0, 255), 2)
cv2.line(image, landmark_point[311], landmark_point[312], (0, 0, 255), 2)
cv2.line(image, landmark_point[312], landmark_point[13], (0, 0, 255), 2)
cv2.line(image, landmark_point[13], landmark_point[82], (0, 0, 255), 2)
cv2.line(image, landmark_point[82], landmark_point[81], (0, 0, 255), 2)
cv2.line(image, landmark_point[81], landmark_point[80], (0, 0, 255), 2)
cv2.line(image, landmark_point[80], landmark_point[191], (0, 0, 255), 2)
cv2.line(image, landmark_point[191], landmark_point[78], (0, 0, 255), 2)
cv2.line(image, landmark_point[78], landmark_point[95], (0, 0, 255), 2)
cv2.line(image, landmark_point[95], landmark_point[88], (0, 0, 255), 2)
cv2.line(image, landmark_point[88], landmark_point[178], (0, 0, 255), 2)
cv2.line(image, landmark_point[178], landmark_point[87], (0, 0, 255), 2)
cv2.line(image, landmark_point[87], landmark_point[14], (0, 0, 255), 2)
cv2.line(image, landmark_point[14], landmark_point[317], (0, 0, 255), 2)
cv2.line(image, landmark_point[317], landmark_point[402], (0, 0, 255), 2)
cv2.line(image, landmark_point[402], landmark_point[318], (0, 0, 255), 2)
cv2.line(image, landmark_point[318], landmark_point[324], (0, 0, 255), 2)
cv2.line(image, landmark_point[324], landmark_point[308], (0, 0, 255), 2)
return image
# BlazeFace人脸检测模型类
class BlazeFace():
def __init__(self):
# 类别数量
self.num_classes = 1
# 锚点数量
self.num_anchors = 896
# 坐标数量
self.num_coords = 16
# 分数裁剪阈值
self.score_clipping_thresh = 100.0
# x坐标缩放因子
self.x_scale = 128.0
# y坐标缩放因子
self.y_scale = 128.0
# 高度缩放因子
self.h_scale = 128.0
# 宽度缩放因子
self.w_scale = 128.0
# 最小分数阈值
self.min_score_thresh = 0.75
# 最小抑制阈值
self.min_suppression_threshold = 0.3
# Sigmoid函数
def sigmoid(self, inX):
if inX >= 0:
return 1.0 / (1 + np.exp(-inX))
else:
return np.exp(inX) / (1 + np.exp(inX))
# 将原始输出张量转换为检测结果
def tensors_to_detections(self, raw_box_tensor, raw_score_tensor, anchors):
assert len(raw_box_tensor.shape) == 3
assert raw_box_tensor.shape[1] == self.num_anchors
assert raw_box_tensor.shape[2] == self.num_coords
assert len(raw_score_tensor.shape) == 3
assert raw_score_tensor.shape[1] == self.num_anchors
assert raw_score_tensor.shape[2] == self.num_classes
assert raw_box_tensor.shape[0] == raw_score_tensor.shape[0]
# 解码边界框
detection_boxes = self._decode_boxes(raw_box_tensor, anchors)
# 裁剪分数
thresh = self.score_clipping_thresh
raw_score_tensor = raw_score_tensor.clip(-thresh, thresh)
# 计算检测分数
detection_scores = 1 / (1 + np.exp(-raw_score_tensor)).squeeze(axis=-1)
# 过滤掉分数低于阈值的检测结果
mask = detection_scores >= self.min_score_thresh
output_detections = []
for i in range(raw_box_tensor.shape[0]):
boxes = detection_boxes[i, mask[i]]
scores = np.expand_dims(detection_scores[i, mask[i]], axis=-1)
output_detections.append(np.concatenate((boxes, scores), axis=-1))
return output_detections
# 解码边界框
def _decode_boxes(self, raw_boxes, anchors):
boxes = np.zeros(raw_boxes.shape)
# 计算边界框的中心点坐标
x_center = raw_boxes[..., 0] / self.x_scale * anchors[:, 2] + anchors[:, 0]
y_center = raw_boxes[..., 1] / self.y_scale * anchors[:, 3] + anchors[:, 1]
# 计算边界框的宽度和高度
w = raw_boxes[..., 2] / self.w_scale * anchors[:, 2]
h = raw_boxes[..., 3] / self.h_scale * anchors[:, 3]
# 计算边界框的左上角和右下角坐标
boxes[..., 0] = y_center - h / 2. # ymin
boxes[..., 1] = x_center - w / 2. # xmin
boxes[..., 2] = y_center + h / 2. # ymax
boxes[..., 3] = x_center + w / 2. # xmax
# 计算关键点坐标
for k in range(6):
offset = 4 + k * 2
keypoint_x = raw_boxes[..., offset] / self.x_scale * anchors[:, 2] + anchors[:, 0]
keypoint_y = raw_boxes[..., offset + 1] / self.y_scale * anchors[:, 3] + anchors[:, 1]
boxes[..., offset] = keypoint_x
boxes[..., offset + 1] = keypoint_y
return boxes
# 加权非极大值抑制
def weighted_non_max_suppression(self, detections):
if len(detections) == 0: return []
output_detections = []
# 按分数从高到低排序
remaining = np.argsort(-detections[:, 16])
while len(remaining) > 0:
detection = detections[remaining[0]]
# 计算第一个框与其他框的重叠度
first_box = detection[:4]
other_boxes = detections[remaining, :4]
ious = overlap_similarity(first_box, other_boxes)
# 过滤掉重叠度低于阈值的框
mask = ious > self.min_suppression_threshold
overlapping = remaining[mask]
remaining = remaining[~mask]
# 计算加权检测结果
weighted_detection = detection.copy()
if len(overlapping) > 1:
coordinates = detections[overlapping, :16]
scores = detections[overlapping, 16:17]
total_score = scores.sum()
weighted = (coordinates * scores).sum(axis=0) / total_score
weighted_detection[:16] = weighted
weighted_detection[16] = total_score / len(overlapping)
output_detections.append(weighted_detection)
return output_detections
# BlazeFace人脸检测函数
def blazeface(raw_output_a, raw_output_b, anchors):
if raw_output_a.size == 896:
raw_score_tensor = raw_output_a
raw_box_tensor = raw_output_b
else:
raw_score_tensor = raw_output_b
raw_box_tensor = raw_output_a
assert (raw_score_tensor.size == 896)
assert (raw_box_tensor.size == 896 * 16)
# 调整输出张量的形状
raw_score_tensor = raw_score_tensor.reshape(1, 896, 1)
raw_box_tensor = raw_box_tensor.reshape(1, 896, 16)
net = BlazeFace()
# 后处理原始预测结果
detections = net.tensors_to_detections(raw_box_tensor, raw_score_tensor, anchors)
# 非极大值抑制
filtered_detections = []
for i in range(len(detections)):
faces = net.weighted_non_max_suppression(detections[i])
if len(faces) > 0:
faces = np.stack(faces)
filtered_detections.append(faces)
return filtered_detections
# 将检测结果从填充图像坐标转换为原始图像坐标
def convert_to_orig_points(results, orig_dim, letter_dim):
# 计算缩放比例
inter_scale = min(letter_dim / orig_dim[0], letter_dim / orig_dim[1])
inter_h, inter_w = int(inter_scale * orig_dim[0]), int(inter_scale * orig_dim[1])
# 计算偏移量
offset_x, offset_y = (letter_dim - inter_w) / 2.0 / letter_dim, (letter_dim - inter_h) / 2.0 / letter_dim
scale_x, scale_y = letter_dim / inter_w, letter_dim / inter_h
# 调整检测结果的坐标
results[:, 0:2] = (results[:, 0:2] - [offset_x, offset_y]) * [scale_x, scale_y]
results[:, 2:4] = results[:, 2:4] * [scale_x, scale_y]
results[:, 4:16:2] = (results[:, 4:16:2] - offset_x) * scale_x
results[:, 5:17:2] = (results[:, 5:17:2] - offset_y) * scale_y
# 将坐标从0-1范围转换为原始图像范围
results[:, 0:16:2] *= orig_dim[1]
results[:, 1:17:2] *= orig_dim[0]
return results.astype(np.int32)
# 计算两个边界框的交并比(IoU)
def overlap_similarity(box, other_boxes):
def union(A, B):
x1, y1, x2, y2 = A
a = (x2 - x1) * (y2 - y1)
x1, y1, x2, y2 = B
b = (x2 - x1) * (y2 - y1)
ret = a + b - intersect(A, B)
return ret
def intersect(A, B):
x1 = max(A[0], B[0])
y1 = max(A[1], B[1])
x2 = min(A[2], B[2])
y2 = min(A[3], B[3])
return (x2 - x1) * (y2 - y1)
ret = np.array([max(0, intersect(box, b) / union(box, b)) for b in other_boxes])
return ret
# 自定义应用类
class MyApp(App):
def __init__(self, *args):
super(MyApp, self).__init__(*args)
# 空闲时更新摄像头
def idle(self):
self.aidcam0.update()
# 主函数,创建UI界面
def main(self):
# 创建垂直容器
main_container = VBox(width=360, height=680, style={'margin': '0px auto'})
# 创建摄像头组件
self.aidcam0 = OpencvVideoWidget(self, width=340, height=400)
self.aidcam0.style['margin'] = '10px'
i = 0
exec("self.aidcam%(i)s = OpencvVideoWidget(self)" % {'i': i})
exec("self.aidcam%(i)s.identifier = 'aidcam%(i)s'" % {'i': i})
eval("main_container.append(self.aidcam%(i)s)" % {'i': i})
main_container.append(self.aidcam0)
# 创建标签
self.lbl = Label('点击图片选择你喜欢的明星脸:')
main_container.append(self.lbl)
# 创建底部容器
bottom_container = HBox(width=360, height=130, style={'margin': '0px auto'})
# 创建图像组件
self.img1 = Image('/res:' + os.getcwd() + '/' + back_img_path[0], height=80, margin='10px')
self.img1.onclick.do(self.on_img1_clicked)
bottom_container.append(self.img1)
self.img2 = Image('/res:' + os.getcwd() + '/' + back_img_path[1], height=80, margin='10px')
self.img2.onclick.do(self.on_img2_clicked)
bottom_container.append(self.img2)
self.img3 = Image('/res:' + os.getcwd() + '/' + back_img_path[2], height=80, margin='10px')
self.img3.onclick.do(self.on_img3_clicked)
bottom_container.append(self.img3)
self.img4 = Image('/res:' + os.getcwd() + '/' + back_img_path[3], height=80, margin='10px')
self.img4.onclick.do(self.on_img4_clicked)
bottom_container.append(self.img4)
# 创建按钮容器
bt_container = HBox(width=360, height=130, style={'margin': '0px auto'})
self.img11 = Image('/res:' + os.getcwd() + '/' + back_img_path[4], height=80, margin='10px')
self.img11.onclick.do(self.on_img11_clicked)
bt_container.append(self.img11)
self.img22 = Image('/res:' + os.getcwd() + '/' + back_img_path[5], height=80, margin='10px')
self.img22.onclick.do(self.on_img22_clicked)
bt_container.append(self.img22)
self.img33 = Image('/res:' + os.getcwd() + '/' + back_img_path[6], height=80, margin='10px')
self.img33.onclick.do(self.on_img33_clicked)
bt_container.append(self.img33)
self.img44 = Image('/res:' + os.getcwd() + '/' + back_img_path[7], height=80, margin='10px')
self.img44.onclick.do(self.on_img44_clicked)
bt_container.append(self.img44)
main_container.append(bottom_container)
main_container.append(bt_container)
return main_container
# 点击第一张图片的回调函数
def on_img1_clicked(self, widget):
global faceimg
bgnd = cv2.imread(back_img_path[0])
faceimg = bgnd
global mod
mod = 0
# 点击第二张图片的回调函数
def on_img2_clicked(self, widget):
global faceimg
bgnd = cv2.imread(back_img_path[1])
faceimg = bgnd
global mod
mod = 1
# 点击第三张图片的回调函数
def on_img3_clicked(self, widget):
global faceimg
bgnd = cv2.imread(back_img_path[2])
faceimg = bgnd
global mod
mod = 2
# 点击第四张图片的回调函数
def on_img4_clicked(self, widget):
global faceimg
bgnd = cv2.imread(back_img_path[3])
faceimg = bgnd
global mod
mod = 3
# 点击第五张图片的回调函数
def on_img11_clicked(self, widget):
global faceimg
bgnd = cv2.imread(back_img_path[4])
faceimg = bgnd
global mod
mod = 4
# 点击第六张图片的回调函数
def on_img22_clicked(self, widget):
global faceimg
bgnd = cv2.imread(back_img_path[5])
faceimg = bgnd
global mod
mod = 5
# 点击第七张图片的回调函数
def on_img33_clicked(self, widget):
global faceimg
bgnd = cv2.imread(back_img_path[6])
faceimg = bgnd
global mod
mod = 6
# 点击第八张图片的回调函数
def on_img44_clicked(self, widget):
global faceimg
bgnd = cv2.imread(back_img_path[7])
faceimg = bgnd
global mod
mod = 7
# 点击第一个按钮的回调函数
def on_button_pressed1(self, widget):
global mod
mod = 0
# 点击第二个按钮的回调函数
def on_button_pressed2(self, widget):
global mod
mod = 1
# 点击第三个按钮的回调函数
def on_button_pressed3(self, widget):
global mod
mod = 2
# 获取摄像头ID
def get_cap_id():
try:
# 构造命令,使用awk处理输出
cmd = "ls -l /sys/class/video4linux | awk -F ' -> ' '/usb/{sub(/.*video/, \"\", $2); print $2}'"
result = subprocess.run(cmd, shell=True, capture_output=True, text=True)
output = result.stdout.strip().split()
# 转换所有捕获的编号为整数,找出最小值
video_numbers = list(map(int, output))
if video_numbers:
return min(video_numbers)
else:
return None
except Exception as e:
print(f"发生错误: {e}")
return None
# 处理函数,实现人脸变换
def process():
cvs.setCustomUI()
# 初始化人脸检测模型
inShape = [[1, 128, 128, 3]]
outShape = [[1, 896, 16], [1, 896, 1]]
model_path = "models/face_detection_front.tflite"
model = aidlite.Model.create_instance(model_path)
if model is None:
print("创建face_detection_front模型失败!")
model.set_model_properties(inShape, aidlite.DataType.TYPE_FLOAT32, outShape, aidlite.DataType.TYPE_FLOAT32)
config = aidlite.Config.create_instance()
config.implement_type = aidlite.ImplementType.TYPE_FAST
config.framework_type = aidlite.FrameworkType.TYPE_TFLITE
config.accelerate_type = aidlite.AccelerateType.TYPE_CPU
config.number_of_threads = 4
fast_interpreter = aidlite.InterpreterBuilder.build_interpretper_from_model_and_config(model, config)
if fast_interpreter is None:
print("face_detection_front模型build_interpretper_from_model_and_config失败!")
result = fast_interpreter.init()
if result != 0:
print("face_detection_front模型解释器初始化失败!")
result = fast_interpreter.load_model()
if result != 0:
print("face_detection_front模型解释器加载模型失败!")
print("face_detection_front模型加载成功!")
# 初始化人脸关键点检测模型
model_path1 = "models/face_landmark.tflite"
inShape1 = [[1 * 192 * 192 * 3]]
outShape1 = [[1 * 1404 * 4], [1 * 4]]
model1 = aidlite.Model.create_instance(model_path1)
if model1 is None:
print("创建face_landmark模型失败!")
model1.set_model_properties(inShape1, aidlite.DataType.TYPE_FLOAT32, outShape1, aidlite.DataType.TYPE_FLOAT32)
config1 = aidlite.Config.create_instance()
config1.implement_type = aidlite.ImplementType.TYPE_FAST
config1.framework_type = aidlite.FrameworkType.TYPE_TFLITE
config1.accelerate_type = aidlite.AccelerateType.TYPE_GPU
config1.number_of_threads = 4
fast_interpreter1 = aidlite.InterpreterBuilder.build_interpretper_from_model_and_config(model1, config1)
if fast_interpreter1 is None:
print("face_landmark模型build_interpretper_from_model_and_config失败!")
result = fast_interpreter1.init()
if result != 0:
print("face_landmark模型解释器初始化失败!")
result = fast_interpreter1.load_model()
if result != 0:
print("face_landmark模型解释器加载模型失败!")
print("face_landmark模型加载成功!")
# 加载锚点
anchors = np.load('models/anchors.npy').astype(np.float32)
# 0-后置,1-前置
camid = 1
capId = get_cap_id()
if capId is None:
print("使用MIPI摄像头")
else:
print("使用USB摄像头")
camid = -1
cap = cvs.VideoCapture(camid)
bFace = False
x_min, y_min, x_max, y_max = (0, 0, 0, 0)
fface = 0.0
global bfirstframe
bfirstframe = True
facepath = "Biden.jpeg"
global faceimg
faceimg = cv2.resize(faceimg, (256, 256))
roi_orifirst = faceimg
padfaceimg = faceimg
fpoints = []
spoints = []
global mod
mod = -1
while True:
# 读取帧
frame = cvs.read()
if frame is None:
continue
if camid == 1:
frame = cv2.flip(frame, 1)
if mod > -1 or bfirstframe:
x_min, y_min, x_max, y_max = (0, 0, 0, 0)
faceimg = cv2.resize(faceimg, (256, 256))
frame = faceimg
bFace = False
roi_orifirst = faceimg
padfaceimg = faceimg
bfirstframe = True
fpoints = []
spoints = []
# 记录开始时间
start_time = time.time()
# 对图像进行填充和预处理
img_pad, img, pad = preprocess_img_pad(frame, 128)
if bFace == False:
# 设置输入数据
result = fast_interpreter.set_input_tensor(0, img.data)
if result != 0:
print("face_detection_front模型解释器set_input_tensor()失败")
# 执行推理
result = fast_interpreter.invoke()
if result != 0:
print("face_detection_front模型解释器invoke()失败")
# 获取输出数据
raw_boxes = fast_interpreter.get_output_tensor(0)
if raw_boxes is None:
print("示例: face_detection_front模型解释器->get_output_tensor(0)失败!")
classificators = fast_interpreter.get_output_tensor(1)
if classificators is None:
print("示例: face_detection_front模型解释器->get_output_tensor(1)失败!")
# 进行人脸检测
detections = blazeface(raw_boxes, classificators, anchors)[0]
if len(detections) > 0:
bFace = True
if bFace:
for i in range(len(detections)):
# 计算人脸框的坐标
ymin = detections[i][0] * img_pad.shape[0]
xmin = detections[i][1] * img_pad.shape[1]
ymax = detections[i][2] * img_pad.shape[0]
xmax = detections[i][3] * img_pad.shape[1]
w = int(xmax - xmin)
h = int(ymax - ymin)
h = max(w, h)
h = h * 1.5
x = (xmin + xmax) / 2.
y = (ymin + ymax) / 2.
xmin = x - h / 2.
xmax = x + h / 2.
ymin = y - h / 2.
ymax = y + h / 2.
ymin = y - h / 2. - 0.08 * h
ymax = y + h / 2. - 0.08 * h
x_min = int(xmin)
y_min = int(ymin)
x_max = int(xmax)
y_max = int(ymax)
x_min = max(0, x_min)
y_min = max(0, y_min)
x_max = min(img_pad.shape[1], x_max)
y_max = min(img_pad.shape[0], y_max)
roi_ori = img_pad[y_min:y_max, x_min:x_max]
roi = preprocess_image_for_tflite32(roi_ori, 192)
# 设置输入数据
result = fast_interpreter1.set_input_tensor(0, roi.data)
if result != 0:
print("face_landmark模型解释器set_input_tensor()失败")
# 执行推理
result = fast_interpreter1.invoke()
if result != 0:
print("face_landmark模型解释器invoke()失败")
# 获取输出数据
mesh = fast_interpreter1.get_output_tensor(0)
if mesh is None:
print("示例: face_landmark模型解释器->get_output_tensor(0)失败!")
stride8 = fast_interpreter1.get_output_tensor(1)
if stride8 is None:
print("示例: face_landmark模型解释器->get_output_tensor(1)失败!")
ffacetmp = stride8[0]
print('fface:', abs(fface - ffacetmp))
if abs(fface - ffacetmp) > 0.5:
bFace = False
fface = ffacetmp
spoints = []
mesh = mesh.reshape(468, 3) / 192
if bfirstframe:
# 获取关键点
getkeypoint(roi_ori, mesh, fpoints)
roi_orifirst = roi_ori.copy()
bfirstframe = False
mod = -1
else:
# 获取关键点
getkeypoint(roi_ori, mesh, spoints)
# 进行人脸变换
roi_ori = faceswap(fpoints, spoints, roi_orifirst, roi_ori)
if roi_ori is None:
continue
img_pad[y_min:y_max, x_min:x_max] = roi_ori
shape = frame.shape
x, y = img_pad.shape[0] / 2, img_pad.shape[1] / 2
frame = img_pad[int(y - shape[0] / 2):int(y + shape[0] / 2), int(x - shape[1] / 2):int(x + shape[1] / 2)]
# 计算处理时间
t = (time.time() - start_time)
lbs = 'Fps: ' + str(int(100 / t) / 100.) + " ~~ Time:" + str(t * 1000) + "ms"
cvs.setLbs(lbs)
# 显示帧
cvs.imshow(frame)
# 休眠1毫秒
time.sleep(0.001)
if __name__ == '__main__':
initcv(startcv, MyApp)
process()