关联规则算法学习—Apriori
Apriori算法是关联规则挖掘中的经典算法,用于发现数据集中的频繁项集和强关联规则。其核心思想基于先验性质:若一个项集是频繁的,则其所有子集也一定是频繁的。该算法通过逐层搜索的迭代方法高效挖掘关联规则。
要求:
理解并掌握关联规则经典算法Apriori算法,理解算法的原理,能够实现算法,并对给定的数据集进行关联规则挖掘
代码实现:
import pandas as pd
from itertools import combinations
from collections import defaultdict
# 读取数据
data = pd.read_csv('实验2-Groceries(1).csv')
# 预处理数据,将字符串格式的项集转换为集合
transactions = []
for items in data['items']:
# 去除大括号和引号,然后分割
items_cleaned = items.strip('{}"').replace('"', '').split(',')
transactions.append(set(items_cleaned))
print(f"总交易数: {len(transactions)}")
print(f"前5条交易示例: {transactions[:5]}")
def get_frequent_itemsets(transactions, min_support):
"""实现Apriori算法找出频繁项集"""
# 第一次扫描:计算单个项目的支持度
item_counts = defaultdict(int)
for transaction in transactions:
for item in transaction:
item_counts[item] += 1
# 筛选满足最小支持度的单项
num_transactions = len(transactions)
frequent_items = {}
for item, count in item_counts.items():
support = count / num_transactions
if support >= min_support:
frequent_items[frozenset([item])] = support
current_frequent = frequent_items
frequent_itemsets = {}
k = 1
while current_frequent:
frequent_itemsets.update(current_frequent)
# 生成候选项集
next_candidates = set()
items = [item for itemset in current_frequent.keys() for item in itemset]
unique_items = list(set(items))
# 生成k+1大小的候选项集
if k == 1:
# 对于k=1,直接两两组合
for i in range(len(unique_items)):
for j in range(i+1, len(unique_items)):
next_candidates.add(frozenset([unique_items[i], unique_items[j]]))
else:
# 对于k>1,使用先验性质
for itemset1 in current_frequent:
for itemset2 in current_frequent:
union_set = itemset1.union(itemset2)
if len(union_set) == k + 1:
next_candidates.add(union_set)
# 第二次扫描:计算候选项集的支持度
candidate_counts = defaultdict(int)
for transaction in transactions:
for candidate in next_candidates:
if candidate.issubset(transaction):
candidate_counts[candidate] += 1
# 筛选满足最小支持度的项集
current_frequent = {}
for itemset, count in candidate_counts.items():
support = count / num_transactions
if support >= min_support:
current_frequent[itemset] = support
k += 1
return frequent_itemsets
def generate_association_rules(frequent_itemsets, min_confidence):
"""生成关联规则"""
rules = []
for itemset in frequent_itemsets.keys():
if len(itemset) < 2:
continue
support_itemset = frequent_itemsets[itemset]
# 生成所有可能的非空子集
all_subsets = []
for i in range(1, len(itemset)):
all_subsets.extend(combinations(itemset, i))
for subset in all_subsets:
subset = frozenset(subset)
remaining = itemset - subset
if remaining:
support_subset = frequent_itemsets.get(subset, 0)
if support_subset > 0:
confidence = support_itemset / support_subset
if confidence >= min_confidence:
rules.append((subset, remaining, support_itemset, confidence))
return rules
# 设置支持度和置信度阈值
min_support = 0.05 # 5%的支持度
min_confidence = 0.3 # 30%的置信度
# 找出频繁项集
frequent_itemsets = get_frequent_itemsets(transactions, min_support)
# 生成关联规则
rules = generate_association_rules(frequent_itemsets, min_confidence)
# 按支持度排序
sorted_rules = sorted(rules, key=lambda x: x[2], reverse=True)
# 打印频繁项集
print("\n频繁项集 (支持度 ≥ {}):".format(min_support))
for itemset, support in frequent_itemsets.items():
if len(itemset) >= 2: # 只显示多项集
print(f"{set(itemset)}: {support:.3f}")
# 打印关联规则
print("\n关联规则 (置信度 ≥ {}):".format(min_confidence))
for rule in sorted_rules[:20]: # 显示前20条规则
antecedent, consequent, support, confidence = rule
print(f"{set(antecedent)} => {set(consequent)} (支持度: {support:.3f}, 置信度: {confidence:.3f})")
# 尝试不同的支持度和置信度
parameters = [
(0.05, 0.3), # 原始参数
(0.03, 0.4), # 更低支持度,更高置信度
(0.08, 0.25) # 更高支持度,更低置信度
]
for sup, conf in parameters:
print(f"\n参数: 最小支持度={sup}, 最小置信度={conf}")
freq_itemsets = get_frequent_itemsets(transactions, sup)
rules = generate_association_rules(freq_itemsets, conf)
print(f"频繁项集数量: {len(freq_itemsets)}")
print(f"关联规则数量: {len(rules)}")
if rules:
# 显示支持度最高的规则
top_rule = max(rules, key=lambda x: x[2])
print("支持度最高的规则:")
print(f"{set(top_rule[0])} => {set(top_rule[1])} (支持度: {top_rule[2]:.3f}, 置信度: {top_rule[3]:.3f})")