DenseNet 模型代码详解
下面是 DenseNet 模型代码的逐部分详细解析:
1. 导入模块
import re
from collections import OrderedDict
from functools import partial
from typing import Any, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from torch import Tensor
from ..transforms._presets import ImageClassification
from ..utils import _log_api_usage_once
from ._api import register_model, Weights, WeightsEnum
from ._meta import _IMAGENET_CATEGORIES
from ._utils import _ovewrite_named_param, handle_legacy_interface
- re: 正则表达式模块,用于处理权重名称的转换
- OrderedDict: 有序字典,用于按顺序构建网络层
- partial: 创建部分函数,用于预设图像转换参数
- torch.nn: PyTorch 的神经网络模块
- torch.utils.checkpoint: 内存优化技术,减少训练时的内存占用
- ImageClassification: 图像分类的预处理转换
- register_model: 注册模型的装饰器
- Weights/WeightsEnum: 预训练权重相关类
- _IMAGENET_CATEGORIES: ImageNet 数据集类别标签
- 模型工具函数: 覆盖参数、处理旧版接口等
2. DenseNet 基础层 (_DenseLayer)
class _DenseLayer(nn.Module):
def __init__(
self, num_input_features: int, growth_rate: int, bn_size: int,
drop_rate: float, memory_efficient: bool = False
) -> None:
super().__init__()
# 第一个卷积块 (1x1 卷积)
self.norm1 = nn.BatchNorm2d(num_input_features)
self.relu1 = nn.ReLU(inplace=True)
self.conv1 = nn.Conv2d(num_input_features, bn_size * growth_rate,
kernel_size=1, stride=1, bias=False)
# 第二个卷积块 (3x3 卷积)
self.norm2 = nn.BatchNorm2d(bn_size * growth_rate)
self.relu2 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(bn_size * growth_rate, growth_rate,
kernel_size=3, stride=1, padding=1, bias=False)
self.drop_rate = float(drop_rate)
self.memory_efficient = memory_efficient
- Bottleneck 结构: 由两个卷积层组成,减少计算量
- 1x1 卷积: 降维,输出通道数为
bn_size * growth_rate
- 3x3 卷积: 主卷积层,输出通道数为
growth_rate
- memory_efficient: 是否使用梯度检查点节省内存
前向传播逻辑
def bn_function(self, inputs: list[Tensor]) -> Tensor:
# 拼接所有输入特征
concated_features = torch.cat(inputs, 1)
# 通过第一个卷积块
bottleneck_output = self.conv1(self.relu1(self.norm1(concated_features)))
return bottleneck_output
def forward(self, input: Tensor) -> Tensor:
if isinstance(input, Tensor):
prev_features = [input]
else:
prev_features = input
# 内存高效模式处理
if self.memory_efficient and self.any_requires_grad(prev_features):
bottleneck_output = self.call_checkpoint_bottleneck(prev_features)
else:
bottleneck_output = self.bn_function(prev_features)
# 通过第二个卷积块
new_features = self.conv2(self.relu2(self.norm2(bottleneck_output)))
# 应用Dropout
if self.drop_rate > 0:
new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
return new_features
- 特征拼接: 将前面所有层的输出拼接在一起
- 梯度检查点: 在内存高效模式下,使用检查点减少内存占用
- Dropout: 随机丢弃部分神经元,防止过拟合
3. Dense 块 (_DenseBlock)
class _DenseBlock(nn.ModuleDict):
def __init__(
self,
num_layers: int,
num_input_features: int,
bn_size: int,
growth_rate: int,
drop_rate: float,
memory_efficient: bool = False,
) -> None:
super().__init__()
# 创建多个密集层
for i in range(num_layers):
layer = _DenseLayer(
num_input_features + i * growth_rate,
growth_rate=growth_rate,
bn_size=bn_size,
drop_rate=drop_rate,
memory_efficient=memory_efficient,
)
self.add_module("denselayer%d" % (i + 1), layer)
- 模块字典: 存储多个密集层
- 输入特征计算: 每增加一层,输入特征增加
growth_rate
个通道
前向传播
def forward(self, init_features: Tensor) -> Tensor:
features = [init_features]
# 逐层处理并收集输出
for name, layer in self.items():
new_features = layer(features)
features.append(new_features)
# 拼接所有层的输出
return torch.cat(features, 1)
- 特征累积: 每一层的输出都添加到特征列表中
- 特征拼接: 将所有层的输出沿通道维度拼接
4. 过渡层 (_Transition)
class _Transition(nn.Sequential):
def __init__(self, num_input_features: int, num_output_features: int) -> None:
super().__init__()
# 压缩特征维度
self.norm = nn.BatchNorm2d(num_input_features)
self.relu = nn.ReLU(inplace=True)
self.conv = nn.Conv2d(num_input_features, num_output_features,
kernel_size=1, stride=1, bias=False)
# 空间下采样
self.pool = nn.AvgPool2d(kernel_size=2, stride=2)
- 特征压缩: 1x1 卷积减少通道数(通常减半)
- 空间降维: 平均池化减小特征图尺寸
5. DenseNet 主模型
class DenseNet(nn.Module):
def __init__(
self,
growth_rate: int = 32,
block_config: tuple[int, int, int, int] = (6, 12, 24, 16),
num_init_features: int = 64,
bn_size: int = 4,
drop_rate: float = 0,
num_classes: int = 1000,
memory_efficient: bool = False,
) -> None:
super().__init__()
_log_api_usage_once(self) # 记录API使用情况
# 初始卷积层
self.features = nn.Sequential(
OrderedDict([
("conv0", nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),
("norm0", nn.BatchNorm2d(num_init_features)),
("relu0", nn.ReLU(inplace=True)),
("pool0", nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),
])
)
# 构建多个Dense块和过渡层
num_features = num_init_features
for i, num_layers in enumerate(block_config):
# 添加Dense块
block = _DenseBlock(
num_layers=num_layers,
num_input_features=num_features,
bn_size=bn_size,
growth_rate=growth_rate,
drop_rate=drop_rate,
memory_efficient=memory_efficient,
)
self.features.add_module("denseblock%d" % (i + 1), block)
num_features += num_layers * growth_rate
# 添加过渡层(最后一个块除外)
if i != len(block_config) - 1:
trans = _Transition(num_features, num_features // 2)
self.features.add_module("transition%d" % (i + 1), trans)
num_features = num_features // 2
# 最终批归一化
self.features.add_module("norm5", nn.BatchNorm2d(num_features))
# 分类器
self.classifier = nn.Linear(num_features, num_classes)
# 参数初始化
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.constant_(m.bias, 0)
- 初始卷积层: 快速下采样输入图像
- 块配置: 控制每个Dense块中的层数
- 通道管理: 通过过渡层压缩通道数
- Kaiming初始化: 卷积层的权重初始化
- 批归一化初始化: 权重设为1,偏置设为0
前向传播
def forward(self, x: Tensor) -> Tensor:
features = self.features(x)
out = F.relu(features, inplace=True)
out = F.adaptive_avg_pool2d(out, (1, 1)) # 全局平均池化
out = torch.flatten(out, 1) # 展平特征
out = self.classifier(out) # 分类
return out
- 特征提取: 通过多个Dense块和过渡层
- 全局平均池化: 将特征图转换为特征向量
- 全连接层: 输出分类结果
6. 权重加载函数
def _load_state_dict(model: nn.Module, weights: WeightsEnum, progress: bool) -> None:
# 匹配旧版权重名称模式
pattern = re.compile(
r"^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$"
)
state_dict = weights.get_state_dict(progress=progress, check_hash=True)
# 转换权重名称
for key in list(state_dict.keys()):
res = pattern.match(key)
if res:
new_key = res.group(1) + res.group(2)
state_dict[new_key] = state_dict[key]
del state_dict[key]
# 加载权重
model.load_state_dict(state_dict)
- 权重名称转换: 适配旧版权重命名方式
- 哈希校验: 确保下载的权重文件完整无误
7. 模型工厂函数
def _densenet(
growth_rate: int,
block_config: tuple[int, int, int, int],
num_init_features: int,
weights: Optional[WeightsEnum],
progress: bool,
**kwargs: Any,
) -> DenseNet:
# 根据权重调整输出类别数
if weights is not None:
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
# 创建模型
model = DenseNet(growth_rate, block_config, num_init_features, **kwargs)
# 加载预训练权重
if weights is not None:
_load_state_dict(model=model, weights=weights, progress=progress)
return model
- 参数覆盖: 根据预训练权重调整输出类别数
- 灵活配置: 支持不同DenseNet变体
8. 预训练权重定义
_COMMON_META = {
"min_size": (29, 29), # 最小输入尺寸
"categories": _IMAGENET_CATEGORIES, # ImageNet类别
"recipe": "https://github.com/pytorch/vision/pull/116", # 训练方法
}
class DenseNet121_Weights(WeightsEnum):
IMAGENET1K_V1 = Weights(
url="https://download.pytorch.org/models/densenet121-a639ec97.pth",
transforms=partial(ImageClassification, crop_size=224), # 图像预处理
meta={
**_COMMON_META,
"num_params": 7978856, # 参数量
"_metrics": { # 性能指标
"ImageNet-1K": {
"acc@1": 74.434, # top-1准确率
"acc@5": 91.972, # top-5准确率
}
},
"_ops": 2.834, # 计算量 (GFLOPs)
"_file_size": 30.845, # 文件大小 (MB)
},
)
DEFAULT = IMAGENET1K_V1 # 默认权重
- 权重元数据: 包含模型性能和资源信息
- 预处理定义: 指定图像分类任务的预处理流程
- 性能指标: 提供在ImageNet上的评估结果
9. 模型变体实现
@register_model() # 注册模型
@handle_legacy_interface(weights=("pretrained", DenseNet121_Weights.IMAGENET1K_V1))
def densenet121(*, weights: Optional[DenseNet121_Weights] = None,
progress: bool = True, **kwargs: Any) -> DenseNet:
weights = DenseNet121_Weights.verify(weights) # 验证权重
return _densenet(32, (6, 12, 24, 16), 64, weights, progress, **kwargs)
- DenseNet121: 增长率32,块配置[6,12,24,16],初始特征64
- DenseNet169: 增长率32,块配置[6,12,32,32],初始特征64
- DenseNet201: 增长率32,块配置[6,12,48,32],初始特征64
- DenseNet161: 增长率48,块配置[6,12,36,24],初始特征96
DenseNet 关键特点
- 密集连接: 每一层都接收前面所有层的特征图作为输入
- 特征重用: 通过拼接实现多层次特征融合
- 瓶颈设计: 1×1卷积减少计算量
- 过渡层: 压缩特征维度和空间尺寸
- 高效内存: 可选的内存优化模式
DenseNet通过密集连接促进了特征重用,减少了梯度消失问题,提高了参数效率,在各种视觉任务中表现出色。