目录
4.3 边界反射101(BORDER_REFLECT_101)
在图像处理中,边缘填充是一个常见的操作,尤其是在对图像进行旋转、缩放或变换时。填充边缘可以避免图像边界出现空白区域,从而保持图像的完整性。本文将详细介绍五种常用的边缘填充方法,并通过代码示例展示它们的实际应用。
一、为什么需要边缘填充?
在对图像进行旋转或变换时,原图像的某些部分可能会超出目标图像的边界,导致目标图像中出现空白区域。例如,当我们将一张图片逆时针旋转45度时,原图的四个顶点在旋转后的图像中已经看不到了,而旋转后的图像的四个顶点区域实际上是空白的。为了填补这些空白区域,我们需要对边缘进行填充。
以下是一个简单的例子:
原图: | 旋转后的图: |
可以看到,旋转后的图像中出现了黑色的空白区域。为了避免这种情况,我们需要对这些空白区域进行填充。
二、边缘填充方法
OpenCV提供了多种边缘填充方法,每种方法都有其独特的填充方式和应用场景。以下是五种常用的边缘填充方法:
4.1 边界复制(BORDER_REPLICATE)
原理
边界复制会将边界处的像素值进行复制,然后作为边界填充的像素值。填充后的图像四周的像素值与边界像素值相同。
示例
原图与填充后的图像对比如下:
原图 | 边界复制填充 |
代码实现
import cv2
import numpy as np
def test_edge_filling():
img = cv2.imread("./src/cat.png")
h, w, c = img.shape
scale = 0.5
m = cv2.getRotationMatrix2D((w // 2, h // 2), 45, scale)
frame = (w, h)
img_replicate = cv2.warpAffine(img, m, frame, borderMode=cv2.BORDER_REPLICATE)
cv2.imshow("Original Image", img)
cv2.imshow("Replicate Border", img_replicate)
cv2.waitKey(0)
cv2.destroyAllWindows()
if __name__ == '__main__':
test_edge_filling()
4.2 边界反射(BORDER_REFLECT)
原理
边界反射会根据原图的边缘进行反射填充。填充后的图像在边界处形成镜像效果。
示例
原图与填充后的图像对比如下:
原图 | 边界反射填充 |
代码实现
img_reflect = cv2.warpAffine(img, m, frame, borderMode=cv2.BORDER_REFLECT)
cv2.imshow("Reflect Border", img_reflect)
4.3 边界反射101(BORDER_REFLECT_101)
原理
与边界反射不同的是,边界反射101不再反射边缘的像素点,而是从倒数第二个像素点开始反射。
示例
原图与填充后的图像对比如下:
原图 | 边界反射101 |
代码实现
img_reflect_101 = cv2.warpAffine(img, m, frame, borderMode=cv2.BORDER_REFLECT_101)
cv2.imshow("Reflect 101 Border", img_reflect_101)
4.4 边界常数(BORDER_CONSTANT)
原理
边界常数填充会用指定的常量值填充空白区域。默认的填充常数值为0(黑色),但也可以指定其他颜色。
示例
原图与填充后的图像对比如下:
原图 | 边界常数填充 |
代码实现
img_constant = cv2.warpAffine(img, m, frame, borderMode=cv2.BORDER_CONSTANT, borderValue=(0, 0, 127))
cv2.imshow("Constant Border", img_constant)
4.5 边界包裹(BORDER_WRAP)
原理
边界包裹会将图像的边界部分“包裹”到另一侧,形成循环效果。
示例
原图与填充后的图像对比如下:
原图 | 边界反射101 |
代码实现
img_wrap = cv2.warpAffine(img, m, frame, borderMode=cv2.BORDER_WRAP)
cv2.imshow("Wrap Border", img_wrap)
三、完整代码
import cv2
import numpy as np
# 填充方式
# 边界复制(BORDER_REPLICATE): 复制边界像素值
# 边界反射(BORDER_REFLECT): 以边界为对称轴,反射填充
# 边界反射101(BORDER_REFLECT_101): 以边界为对称轴,反射填充,但首尾像素不重复
# 边界常数(BORDER_CONSTANT): 用指定常量填充
# 边界包裹(BORDER_WRAP): 以边界为对称轴,循环填充
def test001():
img = cv2.imread("./src/cat.png")
h, w, c = img.shape
scale = 0.5
m = cv2.getRotationMatrix2D((w // 2, h // 2), 45, scale)
frame=(w,h)
# 如果scale后的图像比frame小 就会有部分像素没值 就会进行填充
img_replicate=cv2.warpAffine(img,m,frame,borderMode=cv2.BORDER_REPLICATE)
img_reflect=cv2.warpAffine(img,m,frame,borderMode=cv2.BORDER_REFLECT)
img_reflect_101=cv2.warpAffine(img,m,frame,borderMode=cv2.BORDER_REFLECT_101)
img_constant=cv2.warpAffine(img,m,frame,borderMode=cv2.BORDER_CONSTANT,borderValue=(0,0,127))
img_wrap=cv2.warpAffine(img,m,frame,borderMode=cv2.BORDER_WRAP)
cv2.imshow("img",img)
cv2.imshow("img_replicate",img_replicate)
cv2.imshow("img_reflect",img_reflect)
cv2.imshow("img_reflect_101",img_reflect_101)
cv2.imshow("img_constant",img_constant)
cv2.imshow("img_wrap",img_wrap)
cv2.waitKey(0)
if __name__ == '__main__':
test001()
四、总结
本文介绍了五种常用的边缘填充方法:边界复制、边界反射、边界反射101、边界常数和边界包裹。每种方法都有其独特的应用场景和效果。在实际应用中,可以根据具体需求选择合适的填充方法。
边界复制:适合需要保持边界像素值不变的场景。
边界反射:适合需要镜像效果的场景。
边界反射101:适合需要更自然的镜像效果的场景。
边界常数:适合需要特定颜色填充的场景。
边界包裹:适合需要循环效果的场景。