7-语言模型

发布于:2025-07-11 ⋅ 阅读:(15) ⋅ 点赞:(0)
什么是语言模型
  • 通俗来讲
    语言模型评价一句话是否“合理”或“是人话”
  • 数学上讲
    P(今天天气不错) > P(今错不天天气)
    语言模型用于计算文本的成句概率
语言模型的用途

语音识别、手写识别、输入法。
0

1

N-gram语言模型

2
3
4

5

  • 平滑问题
    0
  • 平滑方法-回退
    1
  • 平滑方法-加一平滑
    2
  • 平滑方法-低频词转为
    3
  • 平滑方法-插值
    4
语言模型的评价指标
  • 困惑度 perplexity
    一般使用合理的目标文本来计算PPL,<若PPL值低,则说明成句概率高>,也就说明由此语言模型来判断,该句子的合理性高,这样是一个好的语言模型
    0
神经网络语言模型优势

向量化表示语义信息优于字符统计,泛化性更好
输入长度不影响模型大小,长距离建模优势
Softmax带来的自带平滑
对下游任务的适配更加方便(作为预训练基座)
0

  • 语言模型应用
    1.话者分离:根据说话内容判断说话人。常用于语言识别系统中,判断录音对话中角色。如客服对话录音,判断坐席或客户
    2.文本纠错:错误可能是同音字或形近字等。对每一个字建立一个混淆字集合。计算整句话成句概率。用混淆字集合中的词替代原句中的字,重新计算概率。
    3.数字归一化:将数字部分依照其格式替换为<阿拉伯数字><汉字数字><汉字连读>等token。使用带token文本训练语言模型。对于新输入的文本,同样使用正则表达式找到数字部分,之后分别带入各个token,使用语言模型计算概率。选取概率最高的token为最终数字格式。
    4.文本打标:可以理解为一种粗粒度的分词。可以依照类似方式,处理分词、文本加标点、文本段落切分等任务。分词或切分段落只需要一种token;打标点时,可以用多种分隔token,代表不同标点。

  • 总结
    1.语言模型的核心能力是计算成句概率,依赖这一能力,可以完成大量不同类型的NLP任务。
    2.基于统计的语言模型和基于神经网络的语言模型各有使用的场景,大体上讲,基于统计的模型优势在于解码速度,而神经网络的模型通常效果更好。
    3.单纯通过PPL评价语言模型是有局限的,通过下游任务效果进行整体评价更好。
    4.深入的理解一种算法,有助于发现更多的应用方式。
    5.看似简单(甚至错误)的假设,也能带来有意义的结果,事实上,这是简化问题的常见方式。

NgramLanguageModel

0

import math
from collections import defaultdict

class NgramLanguageModel:
    def __init__(self, corpus=None, n=3):
        self.n = n
        self.sep = "_"     # 用来分割两个词,没有实际含义,只要是字典里不存在的符号都可以
        self.sos = "<sos>"    #start of sentence,句子开始的标识符
        self.eos = "<eos>"    #end of sentence,句子结束的标识符
        self.unk_prob = 1e-5  #给unk分配一个比较小的概率值,避免集外词概率为0
        self.fix_backoff_prob = 0.4  #使用固定的回退概率
        self.ngram_count_dict = dict((x + 1, defaultdict(int)) for x in range(n))
        self.ngram_count_prob_dict = dict((x + 1, defaultdict(int)) for x in range(n))
        self.ngram_count(corpus)
        self.calc_ngram_prob()

    #将文本切分成词或字或token
    def sentence_segment(self, sentence):
        return sentence.split()
        #return jieba.lcut(sentence)

    #统计ngram的数量
    def ngram_count(self, corpus):
        for sentence in corpus:
            word_lists = self.sentence_segment(sentence)
            word_lists = [self.sos] + word_lists + [self.eos]  #前后补充开始符和结尾符
            for window_size in range(1, self.n + 1):           #按不同窗长扫描文本
                for index, word in enumerate(word_lists):
                    #取到末尾时窗口长度会小于指定的gram,跳过那几个
                    if len(word_lists[index:index + window_size]) != window_size:
                        continue
                    #用分隔符连接word形成一个ngram用于存储
                    ngram = self.sep.join(word_lists[index:index + window_size])
                    self.ngram_count_dict[window_size][ngram] += 1
        #计算总词数,后续用于计算一阶ngram概率
        self.ngram_count_dict[0] = sum(self.ngram_count_dict[1].values())
        return

    #计算ngram概率
    def calc_ngram_prob(self):
        for window_size in range(1, self.n + 1):
            for ngram, count in self.ngram_count_dict[window_size].items():
                if window_size > 1:
                    ngram_splits = ngram.split(self.sep)              #ngram        :a b c
                    ngram_prefix = self.sep.join(ngram_splits[:-1])   #ngram_prefix :a b
                    ngram_prefix_count = self.ngram_count_dict[window_size - 1][ngram_prefix] #Count(a,b)
                else:
                    ngram_prefix_count = self.ngram_count_dict[0]     #count(total word)
                # word = ngram_splits[-1]
                # self.ngram_count_prob_dict[word + "|" + ngram_prefix] = count / ngram_prefix_count
                self.ngram_count_prob_dict[window_size][ngram] = count / ngram_prefix_count
        return

    #获取ngram概率,其中用到了回退平滑,回退概率采取固定值
    def get_ngram_prob(self, ngram):
        n = len(ngram.split(self.sep))
        if ngram in self.ngram_count_prob_dict[n]:
            #尝试直接取出概率
            return self.ngram_count_prob_dict[n][ngram]
        elif n == 1:
            #一阶gram查找不到,说明是集外词,不做回退
            return self.unk_prob
        else:
            #高于一阶的可以回退
            ngram = self.sep.join(ngram.split(self.sep)[1:])
            return self.fix_backoff_prob * self.get_ngram_prob(ngram)

    #回退法预测句子概率
    def calc_sentence_ppl(self, sentence):
        word_list = self.sentence_segment(sentence)
        word_list = [self.sos] + word_list + [self.eos]
        sentence_prob = 0
        for index, word in enumerate(word_list):
            ngram = self.sep.join(word_list[max(0, index - self.n + 1):index + 1])
            prob = self.get_ngram_prob(ngram)
            # print(ngram, prob)
            sentence_prob += math.log(prob)
        return 2 ** (sentence_prob * (-1 / len(word_list)))

if __name__ == "__main__":
    corpus = open("sample.txt", encoding="utf8").readlines()
    lm = NgramLanguageModel(corpus, 3)
    print("词总数:", lm.ngram_count_dict[0])
    print(lm.ngram_count_prob_dict)
    print(lm.calc_sentence_ppl("a c b e f d"))
NNLM

0

#coding:utf8
import torch
import torch.nn as nn
import numpy as np
import math
import random
import os

"""
基于pytorch的rnn语言模型
"""
class LanguageModel(nn.Module):
    def __init__(self, input_dim, vocab):
        super(LanguageModel, self).__init__()
        self.embedding = nn.Embedding(len(vocab) + 1, input_dim)
        self.layer = nn.RNN(input_dim, input_dim, num_layers=2, batch_first=True)
        self.classify = nn.Linear(input_dim, len(vocab) + 1)
        self.dropout = nn.Dropout(0.1)
        self.loss = nn.functional.cross_entropy

    #当输入真实标签,返回loss值;无真实标签,返回预测值
    def forward(self, x, y=None):
        x = self.embedding(x)  #output shape:(batch_size, sen_len, input_dim)
        x, _ = self.layer(x)      #output shape:(batch_size, sen_len, input_dim)
        x = x[:, -1, :]        #output shape:(batch_size, input_dim)
        x = self.dropout(x)
        y_pred = self.classify(x)   #output shape:(batch_size, vocab_size)
        if y is not None:
            return self.loss(y_pred, y) #[1*vocab_size] []
        else:
            return torch.softmax(y_pred, dim=-1)

#读取语料获得字符集
#输出一份
def build_vocab_from_corpus(path):
    vocab = set()
    with open(path, encoding="utf8") as f:
        for index, char in enumerate(f.read()):
            vocab.add(char)
    vocab.add("<UNK>") #增加一个unk token用来处理未登录词
    writer = open("vocab.txt", "w", encoding="utf8")
    for char in sorted(vocab):
        writer.write(char + "\n")
    return vocab

#加载字表
def build_vocab(vocab_path):
    vocab = {}
    with open(vocab_path, encoding="utf8") as f:
        for index, line in enumerate(f):
            char = line[:-1]        #去掉结尾换行符
            vocab[char] = index + 1 #留出0位给pad token
        vocab["\n"] = 1
    return vocab

#加载语料
def load_corpus(path):
    return open(path, encoding="utf8").read()

#随机生成一个样本
#从文本中截取随机窗口,前n个字作为输入,最后一个字作为输出
def build_sample(vocab, window_size, corpus):
    start = random.randint(0, len(corpus) - 1 - window_size)
    end = start + window_size
    window = corpus[start:end]
    target = corpus[end]
    # print(window, target)
    x = [vocab.get(word, vocab["<UNK>"]) for word in window]   #将字转换成序号
    y = vocab[target]
    return x, y

#建立数据集
#batch_size 输入需要的样本数量。需要多少生成多少
#vocab 词表
#window_size 样本长度
#corpus 语料字符串
def build_dataset(batch_size, vocab, window_size, corpus):
    dataset_x = []
    dataset_y = []
    for i in range(batch_size):
        x, y = build_sample(vocab, window_size, corpus)
        dataset_x.append(x)
        dataset_y.append(y)
    return torch.LongTensor(dataset_x), torch.LongTensor(dataset_y)

#建立模型
def build_model(vocab, char_dim):
    model = LanguageModel(char_dim, vocab)
    return model

#计算文本ppl
def calc_perplexity(sentence, model, vocab, window_size):
    prob = 0
    model.eval()
    with torch.no_grad():
        for i in range(1, len(sentence)):
            start = max(0, i - window_size)
            window = sentence[start:i]
            x = [vocab.get(char, vocab["<UNK>"]) for char in window]
            x = torch.LongTensor([x])
            target = sentence[i]
            target_index = vocab.get(target, vocab["<UNK>"])
            if torch.cuda.is_available():
                x = x.cuda()
            pred_prob_distribute = model(x)[0]
            target_prob = pred_prob_distribute[target_index]
            prob += math.log(target_prob, 10)
    return 2 ** (prob * ( -1 / len(sentence)))

def train(corpus_path, save_weight=True):
    epoch_num = 10        #训练轮数
    batch_size = 128       #每次训练样本个数
    train_sample = 10000   #每轮训练总共训练的样本总数
    char_dim = 128        #每个字的维度
    window_size = 6       #样本文本长度
    vocab = build_vocab("vocab.txt")       #建立字表
    corpus = load_corpus(corpus_path)     #加载语料
    model = build_model(vocab, char_dim)    #建立模型
    if torch.cuda.is_available():
        model = model.cuda()
    optim = torch.optim.Adam(model.parameters(), lr=0.001)   #建立优化器
    for epoch in range(epoch_num):
        model.train()
        watch_loss = []
        for batch in range(int(train_sample / batch_size)):
            x, y = build_dataset(batch_size, vocab, window_size, corpus) #构建一组训练样本
            if torch.cuda.is_available():
                x, y = x.cuda(), y.cuda()
            optim.zero_grad()    #梯度归零
            loss = model(x, y)   #计算loss
            watch_loss.append(loss.item())
            loss.backward()      #计算梯度
            optim.step()         #更新权重
        print("=========\n第%d轮平均loss:%f" % (epoch + 1, np.mean(watch_loss)))
    if not save_weight:
        return
    else:
        base_name = os.path.basename(corpus_path).replace("txt", "pth")
        model_path = os.path.join("model", base_name)
        torch.save(model.state_dict(), model_path)
        return

#训练corpus文件夹下的所有语料,根据文件名将训练后的模型放到model文件夹
def train_all():
    for path in os.listdir("corpus"):
        corpus_path = os.path.join("corpus", path)
        train(corpus_path)

if __name__ == "__main__":
    train_all()


网站公告

今日签到

点亮在社区的每一天
去签到