1688商品数据抓取:Python爬虫+动态页面解析

发布于:2025-08-16 ⋅ 阅读:(21) ⋅ 点赞:(0)

1. 引言

在电子商务和数据分析领域,1688(阿里巴巴批发网)作为国内领先的B2B平台,拥有海量的商品数据。企业、研究机构或个人开发者往往需要获取这些数据用于市场分析、价格监控或竞品研究。然而,1688的商品页面通常采用动态加载(AJAX)和反爬机制,传统的静态爬虫难以直接获取数据。

本文将介绍如何利用 Python爬虫 + 动态页面解析技术,精准抓取1688店铺的所有商品信息,包括:

  • 商品名称
  • 价格
  • 销量
  • 库存
  • 商品链接
  • 店铺信息

我们将使用 Selenium + BeautifulSoup 结合的方式,绕过动态加载限制,并优化爬虫效率。文章附带完整代码实现,并提供反爬应对策略。

2. 技术选型

2.1 为什么选择Selenium?

1688的商品列表和详情页通常采用 AJAX动态加载,普通HTTP请求(如**<font style="color:rgb(64, 64, 64);background-color:rgb(236, 236, 236);">requests</font>**)无法获取完整数据。而 Selenium 可以模拟浏览器操作,等待JavaScript渲染完成后再解析页面,确保数据完整性。

2.2 辅助工具

  • BeautifulSoup:解析HTML,提取结构化数据
  • Pandas:存储数据到CSV/Excel
  • ChromeDriver:配合Selenium驱动浏览器

3. 环境准备

3.1 安装依赖库

Selenium需要浏览器驱动(如ChromeDriver),推荐使用**<font style="color:rgb(64, 64, 64);background-color:rgb(236, 236, 236);">webdriver-manager</font>**自动管理:

from selenium import webdriver
from webdriver_manager.chrome import ChromeDriverManager

driver = webdriver.Chrome(ChromeDriverManager().install())

4. 爬虫实现步骤

4.1 分析1688页面结构

目标URL示例:

https://shop.1688.com/xxxxx/xxxxxx.htm(店铺主页)

商品数据通常通过AJAX加载,需分析:

  • 商品列表的API接口(如果有)
  • 动态加载的滚动触发方式
  • 分页逻辑

4.2 模拟登录(可选)

部分店铺需要登录才能查看价格,可使用Selenium自动填充账号密码:

driver.get("https://login.1688.com/")
driver.find_element_by_id("fm-login-id").send_keys("your_username")
driver.find_element_by_id("fm-login-password").send_keys("your_password")
driver.find_element_by_class_name("fm-submit").click()

4.3 获取商品列表

使用Selenium滚动页面,触发AJAX加载所有商品:

from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
import time

def scroll_to_bottom(driver):
    last_height = driver.execute_script("return document.body.scrollHeight")
    while True:
        driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
        time.sleep(2)  # 等待加载
        new_height = driver.execute_script("return document.body.scrollHeight")
        if new_height == last_height:
            break
        last_height = new_height

# 访问店铺首页
driver.get("https://shop.1688.com/shop/xxxxxx.htm")
scroll_to_bottom(driver)  # 滚动到底部加载所有商品

4.4 解析商品数据

使用BeautifulSoup提取商品信息:

from bs4 import BeautifulSoup
import pandas as pd

def parse_products(driver):
    soup = BeautifulSoup(driver.page_source, 'html.parser')
    products = []
    
    for item in soup.select(".offer-list-row .offer-item"):
        name = item.select_one(".offer-title").get_text(strip=True)
        price = item.select_one(".price").get_text(strip=True)
        sales = item.select_one(".sale-num").get_text(strip=True)
        link = item.select_one(".offer-title a")["href"]
        
        products.append({
            "商品名称": name,
            "价格": price,
            "销量": sales,
            "链接": link
        })
    
    return pd.DataFrame(products)

df = parse_products(driver)
df.to_csv("1688_products.csv", index=False)

4.5 处理分页

如果店铺有分页,可循环点击“下一页”:

while True:
    try:
        next_btn = driver.find_element(By.CSS_SELECTOR, ".next-btn")
        next_btn.click()
        time.sleep(3)  # 等待加载
        df = pd.concat([df, parse_products(driver)])
    except:
        break  # 无下一页时退出

5. 反爬策略优化

5.1 随机延迟

避免频繁请求导致封禁:

5.2 使用代理IP

防止IP被封:

5.3 修改User-Agent

模拟不同浏览器:

6. 完整代码示例

from selenium import webdriver
from selenium.webdriver.common.by import By
from webdriver_manager.chrome import ChromeDriverManager
from bs4 import BeautifulSoup
import pandas as pd
import time
import random

# 代理配置信息
proxyHost = "www.16yun.cn"
proxyPort = "5445"
proxyUser = "16QMSOML"
proxyPass = "280651"

def scroll_to_bottom(driver):
    last_height = driver.execute_script("return document.body.scrollHeight")
    while True:
        driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
        time.sleep(random.uniform(1, 3))
        new_height = driver.execute_script("return document.body.scrollHeight")
        if new_height == last_height:
            break
        last_height = new_height

def parse_products(driver):
    soup = BeautifulSoup(driver.page_source, 'html.parser')
    products = []
    
    for item in soup.select(".offer-list-row .offer-item"):
        name = item.select_one(".offer-title").get_text(strip=True)
        price = item.select_one(".price").get_text(strip=True)
        sales = item.select_one(".sale-num").get_text(strip=True)
        link = item.select_one(".offer-title a")["href"]
        
        products.append({
            "商品名称": name,
            "价格": price,
            "销量": sales,
            "链接": link
        })
    
    return pd.DataFrame(products)

def main():
    # 配置Chrome代理选项
    chrome_options = webdriver.ChromeOptions()
    
    # 设置代理认证信息
    proxy_auth_plugin_path = create_proxy_auth_extension(
        proxy_host=proxyHost,
        proxy_port=proxyPort,
        proxy_username=proxyUser,
        proxy_password=proxyPass
    )
    chrome_options.add_extension(proxy_auth_plugin_path)
    
    # 初始化浏览器驱动
    driver = webdriver.Chrome(
        ChromeDriverManager().install(),
        options=chrome_options
    )
    
    try:
        driver.get("https://shop.1688.com/shop/xxxxxx.htm")
        scroll_to_bottom(driver)
        
        df = parse_products(driver)
        
        while True:
            try:
                next_btn = driver.find_element(By.CSS_SELECTOR, ".next-btn")
                next_btn.click()
                time.sleep(3)
                df = pd.concat([df, parse_products(driver)])
            except:
                break
        
        df.to_csv("1688_products.csv", index=False)
    
    finally:
        driver.quit()

def create_proxy_auth_extension(proxy_host, proxy_port, proxy_username, proxy_password, scheme='http'):
    """创建代理认证插件"""
    import string
    import zipfile
    import io
    import os
    
    manifest_json = """
    {
        "version": "1.0.0",
        "manifest_version": 2,
        "name": "Chrome Proxy",
        "permissions": [
            "proxy",
            "tabs",
            "unlimitedStorage",
            "storage",
            "<all_urls>",
            "webRequest",
            "webRequestBlocking"
        ],
        "background": {
            "scripts": ["background.js"]
        },
        "minimum_chrome_version":"22.0.0"
    }
    """
    
    background_js = string.Template(
    """
    var config = {
        mode: "fixed_servers",
        rules: {
        singleProxy: {
            scheme: "${scheme}",
            host: "${host}",
            port: parseInt(${port})
        },
        bypassList: ["localhost"]
        }
    };
    
    chrome.proxy.settings.set({value: config, scope: "regular"}, function() {});
    
    function callbackFn(details) {
        return {
            authCredentials: {
                username: "${username}",
                password: "${password}"
            }
        };
    }
    
    chrome.webRequest.onAuthRequired.addListener(
        callbackFn,
        {urls: ["<all_urls>"]},
        ['blocking']
    );
    """
    ).substitute(
        host=proxy_host,
        port=proxy_port,
        username=proxy_username,
        password=proxy_password,
        scheme=scheme
    )
    
    # 创建临时目录
    temp_dir = os.path.join(os.getcwd(), "chrome_proxy_ext")
    if not os.path.exists(temp_dir):
        os.mkdir(temp_dir)
    
    # 写入manifest.json
    with open(os.path.join(temp_dir, "manifest.json"), "w") as f:
        f.write(manifest_json)
    
    # 写入background.js
    with open(os.path.join(temp_dir, "background.js"), "w") as f:
        f.write(background_js)
    
    # 打包成crx文件
    proxy_auth_plugin_path = os.path.join(temp_dir, "proxy_auth_plugin.zip")
    with zipfile.ZipFile(proxy_auth_plugin_path, "w") as zp:
        zp.write(os.path.join(temp_dir, "manifest.json"), "manifest.json")
        zp.write(os.path.join(temp_dir, "background.js"), "background.js")
    
    return proxy_auth_plugin_path

if __name__ == "__main__":
    main()

7. 结论

本文介绍了如何使用 Python + Selenium + BeautifulSoup 精准抓取1688店铺商品数据,并提供了完整的代码实现。关键点包括:

  1. 动态页面解析:Selenium模拟浏览器加载AJAX数据
  2. 反爬优化:随机延迟、代理IP、User-Agent轮换
  3. 数据存储:Pandas导出CSV

网站公告

今日签到

点亮在社区的每一天
去签到