GANs生成对抗网络生成手写数字的Pytorch实现

发布于:2025-08-18 ⋅ 阅读:(17) ⋅ 点赞:(0)

目录

一、第三方库导入

二、数据集准备

三、使用转置卷积的生成器

四、使用卷积的判别器

五、生成器生成图像

六、主程序

七、运行结果

7.1 生成器和判别器的损失函数图像

7.2 训练过程中生成器生成的图像

八、完整的pytorch代码


由于之前写gans的代码时,我的生成器和判别器不是使用的全连接网络就是卷积,但是无论这两种方法怎么组合,最后生成器生成的图像效果都很不好。因此最后我选择了生成器使用转置卷积,而判别器使用卷积,最后得到的生成图像确实效果比之前好很多了。

一、第三方库导入

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  # 设置中文字体
plt.rcParams['axes.unicode_minus'] = False  # 正常显示负号
from torchvision import transforms
import os
from PIL import Image
from torch.utils.data import Dataset, DataLoader

二、数据集准备

# 手写数字数据集
class MINISTDataset(Dataset):
    def __init__(self, files, root_dir, transform=None):
        self.files = files
        self.root_dir = root_dir
        self.transform = transform
        self.labels = []
        for f in files:
            parts = f.split("_")
            p = parts[2].split(".")[0]
            self.labels.append(int(p))

    def __len__(self):
        return len(self.files)

    def __getitem__(self, idx):
        img_path = os.path.join(self.root_dir, self.files[idx])
        img = Image.open(img_path).convert("L")

        if self.transform:
            img = self.transform(img)

        label = self.labels[idx]
        return img, label

三、使用转置卷积的生成器

class Generator(nn.Module):
    def __init__(self, latent_dim=100):
        super().__init__()
        self.main = nn.Sequential(
            # 输入: latent_dim维噪声 -> 输出: 7x7x256
            nn.ConvTranspose2d(latent_dim, 256, kernel_size=7, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(True),

            # 上采样: 7x7 -> 14x14
            nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(True),

            # 上采样: 14x14 -> 28x28
            nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(True),

            # 输出层: 28x28x1
            nn.ConvTranspose2d(64, 1, kernel_size=3, stride=1, padding=1, bias=False),
            nn.Tanh()
        )

    def forward(self, x):
        # 将噪声重塑为 (batch_size, latent_dim, 1, 1)
        x = x.view(x.size(0), -1, 1, 1)
        return self.main(x)

四、使用卷积的判别器

class Discriminator(nn.Module):
    def __init__(self):
        super().__init__()
        self.main = nn.Sequential(
            # 输入: 1x28x28
            nn.Conv2d(1, 32, kernel_size=4, stride=2, padding=1),  # 输出: 32x14x14
            nn.LeakyReLU(0.2, inplace=True),
            nn.Dropout2d(0.3),

            nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=1),  # 输出: 64x7x7
            nn.BatchNorm2d(64),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Dropout2d(0.3),

            nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),  # 输出: 128x7x7
            nn.BatchNorm2d(128),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Dropout2d(0.3),

            nn.Flatten(),
            nn.Linear(128 * 7 * 7, 1),
            nn.Sigmoid()
        )

    def forward(self, x):
        return self.main(x)

五、生成器生成图像

# 展示生成器生成的图像
def gen_img_plot(test_input, save_path):
    gen_imgs = gen(test_input).detach().cpu()
    gen_imgs = gen_imgs.view(-1, 28, 28)
    plt.figure(figsize=(4, 4))
    for i in range(16):
        plt.subplot(4, 4, i + 1)
        plt.imshow(gen_imgs[i], cmap="gray")
        plt.axis("off")
    plt.savefig(save_path, dpi=300)
    plt.close()

六、主程序

if __name__ == "__main__":

    # 对数据做归一化处理
    transforms = transforms.Compose([
        transforms.Resize((28, 28)),
        transforms.ToTensor(),
        transforms.Normalize((0.5,), (0.5,))
    ])

    # 路径
    base_dir = 'C:\\Users\\Administrator\\PycharmProjects\\CNN'
    train_dir = os.path.join(base_dir, "minist_train")

    # 获取文件夹里图像的名称
    train_files = [f for f in os.listdir(train_dir) if f.endswith('.jpg')]

    # 创建数据集和数据加载器
    train_dataset = MINISTDataset(train_files, train_dir, transform=transforms)
    train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)

    # 参数
    epochs = 50
    lr = 0.0002

    # 初始化模型的优化器和损失函数
    gen = Generator()
    dis = Discriminator()
    d_optim = torch.optim.Adam(dis.parameters(), lr=lr, betas=(0.5, 0.999))  # 判别器的优化器
    g_optim = torch.optim.Adam(gen.parameters(), lr=lr, betas=(0.5, 0.999))  # 生成器的优化器
    loss_fn = torch.nn.BCELoss()  # 二分类交叉熵损失函数

    # 记录loss
    D_loss = []
    G_loss = []

    # 训练
    for epoch in range(epochs):
        d_epoch_loss = 0
        g_epoch_loss = 0

        count = len(train_loader)  # 返回批次数

        for step, (img, _) in enumerate(train_loader):
            # 每个批次的大小
            size = img.size(0)
            random_noise = torch.randn(size, 100)

            # 判别器训练
            d_optim.zero_grad()
            real_output = dis(img)
            d_real_loss = loss_fn(real_output, torch.ones_like(real_output))
            # d_real_loss.backward()

            gen_img = gen(random_noise)
            gen_img = gen_img.view(size, 1, 28, 28)
            fake_output = dis(gen_img.detach())
            d_fake_loss = loss_fn(fake_output, torch.zeros_like(fake_output))
            # d_fake_loss.backward()

            d_loss = (d_real_loss + d_fake_loss) / 2
            d_loss.backward()
            d_optim.step()

            # 生成器的训练
            g_optim.zero_grad()
            fake_output = dis(gen_img)
            g_loss = loss_fn(fake_output, torch.ones_like(fake_output))
            g_loss.backward()
            g_optim.step()

            # 计算在一个epoch里面所有的g_loss和d_loss
            with torch.no_grad():
                d_epoch_loss += d_loss
                g_epoch_loss += g_loss

        # 计算平均损失值
        with torch.no_grad():
            d_epoch_loss = d_epoch_loss / count
            g_epoch_loss = g_epoch_loss / count

            D_loss.append(d_epoch_loss.item())
            G_loss.append(g_epoch_loss.item())

        print("Epoch:", epoch, "  D loss:", d_epoch_loss.item(), "  G Loss:", g_epoch_loss.item())

        # 每隔2个epoch绘制生成器生成的图像
        if (epoch + 1) % 2 == 0:
            test_input = torch.randn(16, 100)
            name = f"gen_img_{epoch}.jpg"
            save_path = os.path.join('C:\\Users\\Administrator\\PycharmProjects\\CNN\\gen_img_11', name)
            gen_img_plot(test_input, save_path)

    # 绘制损失曲线图
    plt.figure(figsize=(12, 6))
    plt.plot(D_loss, label="判别器", color="tomato")
    plt.plot(G_loss, label="生成器", color="orange")
    plt.xlabel("epoch")
    plt.ylabel("loss")
    plt.title("生成器和判别器的损失曲线图")
    plt.legend()
    plt.grid()
    plt.savefig("C:\\Users\\Administrator\\PycharmProjects\\CNN\\gen_dis_loss_11.jpg", dpi=300, bbox_inches="tight")
    plt.close()

七、运行结果

7.1 生成器和判别器的损失函数图像

7.2 训练过程中生成器生成的图像

这里只展示一部分

gen_img_1.jpg

gen_img_25.jpg

gen_img_49.jpg

八、完整的pytorch代码

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  # 设置中文字体
plt.rcParams['axes.unicode_minus'] = False  # 正常显示负号
from torchvision import transforms
import os
from PIL import Image
from torch.utils.data import Dataset, DataLoader


# 手写数字数据集
class MINISTDataset(Dataset):
    def __init__(self, files, root_dir, transform=None):
        self.files = files
        self.root_dir = root_dir
        self.transform = transform
        self.labels = []
        for f in files:
            parts = f.split("_")
            p = parts[2].split(".")[0]
            self.labels.append(int(p))

    def __len__(self):
        return len(self.files)

    def __getitem__(self, idx):
        img_path = os.path.join(self.root_dir, self.files[idx])
        img = Image.open(img_path).convert("L")

        if self.transform:
            img = self.transform(img)

        label = self.labels[idx]
        return img, label



# 改进的生成器(使用转置卷积)
class Generator(nn.Module):
    def __init__(self, latent_dim=100):
        super().__init__()
        self.main = nn.Sequential(
            # 输入: latent_dim维噪声 -> 输出: 7x7x256
            nn.ConvTranspose2d(latent_dim, 256, kernel_size=7, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(True),

            # 上采样: 7x7 -> 14x14
            nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(True),

            # 上采样: 14x14 -> 28x28
            nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(True),

            # 输出层: 28x28x1
            nn.ConvTranspose2d(64, 1, kernel_size=3, stride=1, padding=1, bias=False),
            nn.Tanh()
        )

    def forward(self, x):
        # 将噪声重塑为 (batch_size, latent_dim, 1, 1)
        x = x.view(x.size(0), -1, 1, 1)
        return self.main(x)


# 改进的判别器(使用深度卷积网络)
class Discriminator(nn.Module):
    def __init__(self):
        super().__init__()
        self.main = nn.Sequential(
            # 输入: 1x28x28
            nn.Conv2d(1, 32, kernel_size=4, stride=2, padding=1),  # 输出: 32x14x14
            nn.LeakyReLU(0.2, inplace=True),
            nn.Dropout2d(0.3),

            nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=1),  # 输出: 64x7x7
            nn.BatchNorm2d(64),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Dropout2d(0.3),

            nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),  # 输出: 128x7x7
            nn.BatchNorm2d(128),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Dropout2d(0.3),

            nn.Flatten(),
            nn.Linear(128 * 7 * 7, 1),
            nn.Sigmoid()
        )

    def forward(self, x):
        return self.main(x)


# 展示生成器生成的图像
def gen_img_plot(test_input, save_path):
    gen_imgs = gen(test_input).detach().cpu()
    gen_imgs = gen_imgs.view(-1, 28, 28)
    plt.figure(figsize=(4, 4))
    for i in range(16):
        plt.subplot(4, 4, i + 1)
        plt.imshow(gen_imgs[i], cmap="gray")
        plt.axis("off")
    plt.savefig(save_path, dpi=300)
    plt.close()


if __name__ == "__main__":

    # 对数据做归一化处理
    transforms = transforms.Compose([
        transforms.Resize((28, 28)),
        transforms.ToTensor(),
        transforms.Normalize((0.5,), (0.5,))
    ])

    # 路径
    base_dir = 'C:\\Users\\Administrator\\PycharmProjects\\CNN'
    train_dir = os.path.join(base_dir, "minist_train")

    # 获取文件夹里图像的名称
    train_files = [f for f in os.listdir(train_dir) if f.endswith('.jpg')]

    # 创建数据集和数据加载器
    train_dataset = MINISTDataset(train_files, train_dir, transform=transforms)
    train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)

    # 参数
    epochs = 50
    lr = 0.0002

    # 初始化模型的优化器和损失函数
    gen = Generator()
    dis = Discriminator()
    d_optim = torch.optim.Adam(dis.parameters(), lr=lr, betas=(0.5, 0.999))  # 判别器的优化器
    g_optim = torch.optim.Adam(gen.parameters(), lr=lr, betas=(0.5, 0.999))  # 生成器的优化器
    loss_fn = torch.nn.BCELoss()  # 二分类交叉熵损失函数

    # 记录loss
    D_loss = []
    G_loss = []

    # 训练
    for epoch in range(epochs):
        d_epoch_loss = 0
        g_epoch_loss = 0

        count = len(train_loader)  # 返回批次数

        for step, (img, _) in enumerate(train_loader):
            # 每个批次的大小
            size = img.size(0)
            random_noise = torch.randn(size, 100)

            # 判别器训练
            d_optim.zero_grad()
            real_output = dis(img)
            d_real_loss = loss_fn(real_output, torch.ones_like(real_output))
            # d_real_loss.backward()

            gen_img = gen(random_noise)
            gen_img = gen_img.view(size, 1, 28, 28)
            fake_output = dis(gen_img.detach())
            d_fake_loss = loss_fn(fake_output, torch.zeros_like(fake_output))
            # d_fake_loss.backward()

            d_loss = (d_real_loss + d_fake_loss) / 2
            d_loss.backward()
            d_optim.step()

            # 生成器的训练
            g_optim.zero_grad()
            fake_output = dis(gen_img)
            g_loss = loss_fn(fake_output, torch.ones_like(fake_output))
            g_loss.backward()
            g_optim.step()

            # 计算在一个epoch里面所有的g_loss和d_loss
            with torch.no_grad():
                d_epoch_loss += d_loss
                g_epoch_loss += g_loss

        # 计算平均损失值
        with torch.no_grad():
            d_epoch_loss = d_epoch_loss / count
            g_epoch_loss = g_epoch_loss / count

            D_loss.append(d_epoch_loss.item())
            G_loss.append(g_epoch_loss.item())

        print("Epoch:", epoch, "  D loss:", d_epoch_loss.item(), "  G Loss:", g_epoch_loss.item())

        # 每隔2个epoch绘制生成器生成的图像
        if (epoch + 1) % 2 == 0:
            test_input = torch.randn(16, 100)
            name = f"gen_img_{epoch}.jpg"
            save_path = os.path.join('C:\\Users\\Administrator\\PycharmProjects\\CNN\\gen_img_11', name)
            gen_img_plot(test_input, save_path)

    # 绘制损失曲线图
    plt.figure(figsize=(12, 6))
    plt.plot(D_loss, label="判别器", color="tomato")
    plt.plot(G_loss, label="生成器", color="orange")
    plt.xlabel("epoch")
    plt.ylabel("loss")
    plt.title("生成器和判别器的损失曲线图")
    plt.legend()
    plt.grid()
    plt.savefig("C:\\Users\\Administrator\\PycharmProjects\\CNN\\gen_dis_loss_11.jpg", dpi=300, bbox_inches="tight")
    plt.close()

网站公告

今日签到

点亮在社区的每一天
去签到