flink 伪代码

发布于:2025-09-06 ⋅ 阅读:(11) ⋅ 点赞:(0)

 

import java.util.*;
import java.util.concurrent.*;

// 核心接口定义
interface StreamOperator {
    void open();
    void processElement(Object element);
    void close();
}

interface SourceFunction extends StreamOperator {
    void run(SourceContext ctx);
}

interface SinkFunction extends StreamOperator {
    void invoke(Object value);
}

// 运行时组件
class JobGraph {
    private List<StreamOperator> operators = new ArrayList<>();

    public void addOperator(StreamOperator operator) {
        operators.add(operator);
    }

    public List<StreamOperator> getOperators() {
        return operators;
    }
}

class ExecutionGraph {
    private List<ExecutionVertex> vertices = new ArrayList<>();

    public void addVertex(ExecutionVertex vertex) {
        vertices.add(vertex);
    }

    public List<ExecutionVertex> getVertices() {
        return vertices;
    }
}

class ExecutionVertex {
    private StreamOperator operator;
    private int parallelism;

    public ExecutionVertex(StreamOperator operator, int parallelism) {
        this.operator = operator;
        this.parallelism = parallelism;
    }

    public StreamOperator getOperator() {
        return operator;
    }
}

// 主控节点
class JobManager {
    private ResourceManager resourceManager = new ResourceManager();
    private Map<String, JobMaster> runningJobs = new ConcurrentHashMap<>();

    public String submitJob(JobGraph jobGraph) {
        String jobId = UUID.randomUUID().toString();
        JobMaster jobMaster = new JobMaster(jobId, jobGraph);
        runningJobs.put(jobId, jobMaster);
        jobMaster.start(resourceManager);
        return jobId;
    }
}

class JobMaster {
    private String jobId;
    private JobGraph jobGraph;
    private CheckpointCoordinator checkpointCoordinator;

    public JobMaster(String jobId, JobGraph jobGraph) {
        this.jobId = jobId;
        this.jobGraph = jobGraph;
        this.checkpointCoordinator = new CheckpointCoordinator();
    }

    public void start(ResourceManager resourceManager) {
        // 构建执行图
        ExecutionGraph executionGraph = buildExecutionGraph(jobGraph);

        // 申请资源
        List<TaskSlot> slots = resourceManager.allocateResources(executionGraph);

        // 部署任务
        deployTasks(executionGraph, slots);

        // 启动检查点协调器
        checkpointCoordinator.start(jobId, executionGraph);
    }

    private ExecutionGraph buildExecutionGraph(JobGraph jobGraph) {
        ExecutionGraph executionGraph = new ExecutionGraph();
        for (StreamOperator operator : jobGraph.getOperators()) {
            executionGraph.addVertex(new ExecutionVertex(operator, 2)); // 默认并行度2
        }
        return executionGraph;
    }

    private void deployTasks(ExecutionGraph executionGraph, List<TaskSlot> slots) {
        int slotIndex = 0;
        for (ExecutionVertex vertex : executionGraph.getVertices()) {
            for (int i = 0; i < vertex.getParallelism(); i++) {
                Task task = new Task(vertex.getOperator());
                slots.get(slotIndex++ % slots.size()).deployTask(task);
            }
        }
    }
}

// 资源管理
class ResourceManager {
    private List<TaskManager> taskManagers = new ArrayList<>();

    public ResourceManager() {
        // 初始化3个TaskManager
        for (int i = 0; i < 3; i++) {
            taskManagers.add(new TaskManager(i));
        }
    }

    public List<TaskSlot> allocateResources(ExecutionGraph executionGraph) {
        List<TaskSlot> slots = new ArrayList<>();
        for (TaskManager tm : taskManagers) {
            slots.addAll(tm.getAvailableSlots());
        }
        return slots.subList(0, Math.min(slots.size(), executionGraph.getVertices().size()));
    }
}

// 工作节点
class TaskManager {
    private int id;
    private List<TaskSlot> slots = new ArrayList<>();

    public TaskManager(int id) {
        this.id = id;
        // 每个TaskManager有2个slot
        slots.add(new TaskSlot(id + "-1"));
        slots.add(new TaskSlot(id + "-2"));
    }

    public List<TaskSlot> getAvailableSlots() {
        return new ArrayList<>(slots);
    }
}

class TaskSlot {
    private String id;
    private Task runningTask;

    public TaskSlot(String id) {
        this.id = id;
    }

    public void deployTask(Task task) {
        this.runningTask = task;
        task.start();
    }
}

// 任务执行
class Task implements Runnable {
    private StreamOperator operator;
    private Thread executionThread;

    public Task(StreamOperator operator) {
        this.operator = operator;
    }

    public void start() {
        executionThread = new Thread(this);
        executionThread.start();
    }

    @Override
    public void run() {
        operator.open();

        // 模拟数据处理循环
        while (true) {
            Object element = fetchNextElement(); // 从上游获取数据
            if (element != null) {
                operator.processElement(element);
            }
        }
    }

    private Object fetchNextElement() {
        // 实际从网络或本地队列获取数据
        return Math.random() > 0.5 ? new Object() : null;
    }
}

// 容错机制
class CheckpointCoordinator {
    public void start(String jobId, ExecutionGraph executionGraph) {
        ScheduledExecutorService scheduler = Executors.newScheduledThreadPool(1);
        scheduler.scheduleAtFixedRate(() -> {
            triggerCheckpoint(jobId, executionGraph);
        }, 0, 10, TimeUnit.SECONDS); // 每10秒触发检查点
    }

    private void triggerCheckpoint(String jobId, ExecutionGraph executionGraph) {
        System.out.println("Triggering checkpoint for job: " + jobId);

        // 1. 通知所有任务开始检查点
        for (ExecutionVertex vertex : executionGraph.getVertices()) {
            // 实际实现中会通过RPC通知TaskManager
        }

        // 2. 等待所有任务确认
        // 3. 持久化检查点元数据
    }
}

// 示例应用
public class SimpleFlinkDemo {
    public static void main(String[] args) {
        // 1. 创建作业图
        JobGraph jobGraph = new JobGraph();

        // 创建数据源
        SourceFunction source = new SourceFunction() {
            @Override public void open() {}
            @Override public void close() {}

            @Override
            public void run(SourceContext ctx) {
                // 实际产生数据流
            }

            @Override
            public void processElement(Object element) {
                // 源操作符不需要处理元素
            }
        };

        // 创建处理算子
        StreamOperator mapper = new StreamOperator() {
            @Override public void open() {}
            @Override public void close() {}

            @Override
            public void processElement(Object element) {
                System.out.println("Processing: " + element);
                // 实际处理逻辑
            }
        };

        // 创建输出算子
        SinkFunction sink = new SinkFunction() {
            @Override public void open() {}
            @Override public void close() {}

            @Override
            public void invoke(Object value) {
                System.out.println("Output: " + value);
            }

            @Override
            public void processElement(Object element) {
                invoke(element);
            }
        };

        // 构建作业图
        jobGraph.addOperator(source);
        jobGraph.addOperator(mapper);
        jobGraph.addOperator(sink);

        // 2. 提交作业
        JobManager jobManager = new JobManager();
        String jobId = jobManager.submitJob(jobGraph);
        System.out.println("Job submitted with ID: " + jobId);

        // 保持主线程运行
        try {
            Thread.sleep(60000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

1.创建作业图list:source数据源,mapper处理算子,sink输出算子提交

2.加入jobmanager

3.jobmaster 添加一个作业 id:job,里main含有job图

4.生成执行图,里面装的是执行ExecutionVertex

5.给执行图分配slot

6.部署task

执行检查


网站公告

今日签到

点亮在社区的每一天
去签到