【智能优化算法】基于多元宇宙算法求解多目标经济联合排放调度优化问题

发布于:2022-08-02 ⋅ 阅读:(291) ⋅ 点赞:(0)

1 内容介绍

本研究实施了一种有效的多目标多维优化算法来解决高度复杂的联合经济排放调度和热电联合经济排放调度问题。解决这些问题可以经济地运行与热电联产厂集成的电力系统,并减少化石燃料发电厂的污染物对环境造成的影响。提出了一种基于混沌对抗的策略来广泛探索搜索空间并为多目标优化算法生成初始种群。还提出了一种有效的约束处理机制,使人口保持在热电联产厂的范围内和可行的运行区域内。该算法应用于标准测试功能、四个测试系统,包括考虑阀点效应、斜坡限制、传输功率损耗和热电联产机组可行运行区域的大型 140 总线系统。与其他优化算法相比,该算法得到的帕累托最优解具有良好的分布性和多样性。统计分析和使用的各种性能指标表明,该算法收敛到真正的 POF,是解决高度复杂的联合经济排放调度和热电联合经济排放调度问题的可行替代方案。​

2 仿真代码

%--------------------------------------------------------------------------

% Economic and Emission dispatch Data for 140 bus power system 

% Main paper:

% A. Sundaram, “Multiobjective multi-verse optimization algorithm to solve 

% combined economic, % heat and power emission dispatch problems,” 

% Applied Soft Computing Journal, % vol. 91, p. 106195, 2020, 

% doi: 10.1016/j.asoc.2020.106195.

% Data was developed by Dr.Arunachalam Sundaram and is available in

% appendix B of the above paper.

%  Email:mailtoarunachalam@gmail.com

%--------------------------------------------------------------------------

% Sl.No.PminPmax a         b     c UR DR P0 k                   l       m       n q

%        MW MW $⁄(〖MW〗^2 h)$⁄MWh $⁄h  MW   MW  MW ton⁄(〖MW〗^2 h) ton⁄MWh ton⁄h ton⁄h 1/MW

data1=[...

1 71 119 0.032888 61.242 1220.645 30 120 98.4 71 137 455 0.023534 64.314 4435.493 1350 1350 409.6

2 120 189 0.008280 41.095 1315.118 30 120 134 72 137 455 0.035475 45.017 9750.750 1350 1350 412

3 125 190 0.003849 46.310 874.288 60 60 141.5 73 195 541 0.000915 70.644 1042.366 780 780 423.2

4 125 190 0.003849 46.310 874.288 60 60 183.3 74 175 536 0.000044 70.959 1159.895 1650 1650 428

5 90 190 0.042468 54.242 1976.469 150 150 125 75 175 540 0.000044 70.959 1159.895 1650 1650 436

6 90 190 0.014992 61.215 1338.087 150 150 91.3 76 175 538 0.001307 70.302 1303.990 1650 1650 428

7 280 490 0.007039 11.791 1818.299 180 300 401.1 77 175 540 0.000392 70.662 1156.193 1650 1650 425

8 280 490 0.003079 15.055 1133.978 180 300 329.5 78 330 574 0.000087 71.101 2118.968 1620 1620 497.2

9 260 496 0.005063 13.226 1320.636 300 510 386.1 79 160 531 0.000521 37.854 779.519 1482 1482 510

10 260 496 0.005063 13.226 1320.636 300 510 427.3 80 160 531 0.000498 37.768 829.888 1482 1482 470

11 260 496 0.005063 13.226 1320.636 300 510 412.2 81 200 542 0.001046 67.983 2333.690 1668 1668 464.1

12 260 496 0.003552 14.498 1106.539 300 510 370.1 82 56 132 0.132050 77.838 2028.954 120 120 118.1

13 260 506 0.003901 14.651 1176.504 600 600 301.8 83 115 245 0.096968 63.671 4412.017 180 180 141.3

14 260 509 0.003901 14.651 1176.504 600 600 368 84 115 245 0.054868 79.458 2982.219 120 180 132

15 260 506 0.003901 14.651 1176.504 600 600 301.9 85 115 245 0.054868 79.458 2982.219 120 180 135

16 260 505 0.003901 14.651 1176.504 600 600 476.4 86 207 307 0.014382 93.966 3174.939 120 180 252

17 260 506 0.002393 15.669 1017.406 600 600 283.1 87 207 307 0.013161 94.723 3218.359 120 180 221

18 260 506 0.002393 15.669 1017.406 600 600 414.1 88 175 345 0.016033 66.919 3723.822 318 318 245.9

19 260 505 0.003684 14.656 1229.131 600 600 328 89 175 345 0.013653 68.185 3551.405 318 318 247.9

20 260 505 0.003684 14.656 1229.131 600 600 389.4 90 175 345 0.028148 60.821 4322.615 318 318 183.6

21 260 505 0.003684 14.656 1229.131 600 600 354.7 91 175 345 0.013470 68.551 3493.739 318 318 288

22 260 505 0.003684 14.656 1229.131 600 600 262 92 360 580 0.000064 2.842 226.799 18 18 557.4

23 260 505 0.004004 14.378 1267.894 600 600 461.5 93 415 645 0.000252 2.946 382.932 18 18 529.5

24 260 505 0.003684 14.656 1229.131 600 600 371.6 94 795 984 0.000022 3.096 156.987 36 36 800.8

25 280 537 0.001619 16.261 975.926 300 300 462.6 95 795 978 0.000022 3.040 154.484 36 36 801.5

26 280 537 0.005093 13.362 1532.093 300 300 379.2 96 578 682 0.000203 1.709 332.834 138 204 582.7

27 280 549 0.000993 17.203 641.989 360 360 530.8 97 615 720 0.000198 1.668 326.599 144 216 680.7

28 280 549 0.000993 17.203 641.989 360 360 391.9 98 612 718 0.000215 1.789 345.306 144 216 670.7

29 260 501 0.002473 15.274 911.533 180 180 480.1 99 612 720 0.000218 1.815 350.372 144 216 651.7

30 260 501 0.002547 15.212 910.533 180 180 319 100 758 964 0.000193 2.726 370.377 48 48 921

31 260 506 0.003542 15.033 1074.810 600 600 329.5 101 755 958 0.000197 2.732 367.067 48 48 916.8

32 260 506 0.003542 15.033 1074.810 600 600 333.8 102 750 1007 0.000324 2.651 124.875 36 54 911.9

33 260 506 0.003542 15.033 1074.810 600 600 390 103 750 1006 0.000344 2.798 130.785 36 54 898

34 260 506 0.003542 15.033 1074.810 600 600 432 104 713 1013 0.000690 1.595 878.746 30 30 905

35 260 500 0.003132 13.992 1278.460 660 660 402 105 718 1020 0.000650 1.503 827.959 30 30 846.5

36 260 500 0.001323 15.679 861.742 900 900 428 106 791 954 0.000233 2.425 432.007 30 30 850.9

37 120 241 0.002950 16.542 408.834 180 180 178.4 107 786 952 0.000239 2.499 445.606 30 30 843.7

38 120 241 0.002950 16.542 408.834 180 180 194.1 108 795 1006 0.000261 2.674 467.223 36 36 841.4

39 423 774 0.000991 16.518 1288.815 600 600 474 109 795 1013 0.000259 2.692 475.940 36 36 835.7

40 423 769 0.001581 15.815 1436.251 600 600 609.8 110 795 1021 0.000707 1.633 899.462 36 36 828.8

41 3 19 0.902360 75.464 669.988 210 210 17.8 111 795 1015 0.000786 1.816 1000.367 36 36 846

42 3 28 0.110295 129.544 134.544 366 366 6.9 112 94 203 0.014355 89.830 1269.132 120 120 179

43 160 250 0.024493 56.613 3427.912 702 702 224.3 113 94 203 0.014355 89.830 1269.132 120 120 120.8

44 160 250 0.029156 54.451 3751.772 702 702 210 114 94 203 0.014355 89.830 1269.132 120 120 121

45 160 250 0.024667 54.736 3918.780 702 702 212 115 244 379 0.030266 64.125 4965.124 480 480 317.4

46 160 250 0.016517 58.034 3379.580 702 702 200.8 116 244 379 0.030266 64.125 4965.124 480 480 318.4

47 160 250 0.026584 55.981 3345.296 702 702 220 117 244 379 0.030266 64.125 4965.124 480 480 335.8

48 160 250 0.007540 61.520 3138.754 702 702 232.9 118 95 190 0.024027 76.129 2243.185 240 240 151

49 160 250 0.016430 58.635 3453.050 702 702 168 119 95 189 0.001580 81.805 2290.381 240 240 129.5

50 160 250 0.045934 44.647 5119.300 702 702 208.4 120 116 194 0.022095 81.140 1681.533 120 120 130

51 165 504 0.000044 71.584 1898.415 1350 1350 443.9 121 175 321 0.076810 46.665 6743.302 180 180 218.8

52 165 504 0.000044 71.584 1898.415 1350 1350 426 122 2 19 0.953443 78.412 394.398 90 90 5.4

53 165 504 0.000044 71.584 1898.415 1350 1350 434.1 123 4 59 0.000044 112.088 1243.165 90 90 45

54 165 504 0.000044 71.584 1898.415 1350 1350 402.5 124 15 83 0.072468 90.871 1454.740 300 300 20

55 180 471 0.002528 85.120 2473.390 1350 1350 357.4 125 9 53 0.000448 97.116 1011.051 162 162 16.3

56 180 561 0.000131 87.682 2781.705 720 720 423 126 12 37 0.599112 83.244 909.269 114 114 20

57 103 341 0.010372 69.532 5515.508 720 720 220 127 10 34 0.244706 95.665 689.378 120 120 22.1

58 198 617 0.007627 78.339 3478.300 2700 2700 369.4 128 112 373 0.000042 91.202 1443.792 1080 1080 125

59 100 312 0.012464 58.172 6240.909 1500 1500 273.5 129 4 20 0.085145 104.501 535.553 60 60 10

60 153 471 0.039441 46.636 9960.110 1656 1656 336 130 5 38 0.524718 83.015 617.734 66 66 13

61 163 500 0.007278 76.947 3671.997 2160 2160 432 131 5 19 0.176515 127.795 90.966 12 6 7.5

62 95 302 0.000044 80.761 1837.383 900 900 220 132 50 98 0.063414 77.929 974.447 300 300 53.2

63 160 511 0.000044 70.136 3108.395 1200 1200 410.6 133 5 10 2.740485 92.779 263.810 6 6 6.4

64 160 511 0.000044 70.136 3108.395 1200 1200 422.7 134 42 74 0.112438 80.950 1335.594 60 60 69.1

65 196 490 0.018827 49.840 7095.484 1014 1014 351 135 42 74 0.041529 89.073 1033.871 60 60 49.9

66 196 490 0.010852 65.404 3392.732 1014 1014 296 136 41 105 0.000911 161.288 1391.325 528 528 91

67 196 490 0.018827 49.840 7095.484 1014 1014 411.1 137 17 51 0.005245 161.829 4477.110 300 300 41

68 196 490 0.018827 49.840 7095.484 1014 1014 263.2 138 7 19 0.234787 84.972 57.794 18 30 13.7

69 130 432 0.034560 66.465 4288.320 1350 1350 370.3 139 7 19 0.234787 84.972 57.794 18 30 7.4

70 130 432 0.081540 22.941 13813.001 1350 1350 418.7 140 26 40 1.111878 16.087 1258.437 72 120 28.6

];

% costdata1=[data1(:,1:9);data1(:,10:18)];

3 运行结果

4 参考文献

[1] Sundaram A . Multiobjective multi-verse optimization algorithm to solve combined economic, heat and power emission dispatch problems[J]. Applied Soft Computing, 2020, 91:106195.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。