目录
一、蚁群算法特点
(1)自组织算法
组织力和组织指令来自系统内部
(2)并行算法
蚂蚁搜索过程彼此独立,仅通过信息素进行通信
(3)正反馈算法
信息素堆积是一个正反馈的过程
二、基本蚁群算法及其流程
算法初始时刻,将m只蚂蚁随机放到n座城市,同时,将每只蚂蚁的禁忌表tabu的第一个元素设置为它当前所在城市。此时个路径上的信息素相等,接下来每只蚂蚁根据路径上残留的信息素量和启发式信息(两城市距离)独立地选择下一座城市,在时刻t,蚂蚁k从城市i转移到城市j的概率为:
当所有蚂蚁完成一次周游后,各路径上的信息素更新:
其中表示本次迭代中边
上信息素的增量,即
表示第k只蚂蚁在被刺迭代中留在边
上的信息素两,如果蚂蚁没有经过,则其值为零。
M。Dorigo提出了3中蚂蚁系统,上面这种称为ant-cycle模型,另外两种模型称为ant-quantity模型和ant-density模型,其差别主要在于
ant-quantity模型
ant-density模型
实验结果表明,ant-cycle模型比ant-quantity和ant-density模型有更好的性能。这是因为ant-cycle模型利用全局信息更新路径上的信息素量,而ant-quantity和ant-density模型使用局部信息
三、改进蚁群算法
1.精英蚂蚁系统
该算法将已经发现的最好解称为,而该路径在修改信息素轨迹时,人工释放额外的信息孙,以增强正反馈的效果。信息素修改功式为
式中,式调整
影响权重的参数,而
由下式给出
是已知最优路径的长度
2.最大最小蚂蚁系统
该算法主要有三方面不同
1)每次循环,只有一只蚂蚁进行信息素过呢更新,该蚂蚁可以是本次循环最优解,也可以是全局最优解
2)信息素轨迹量的值域限制在
3)信息素初始值设置在
3.基于排序的蚁群算法
蚂蚁按旅行长度排名(短的靠前),蚂蚁释放的信息素的量要和蚂蚁的排名相乘。每次循环中,排名前位的蚂蚁和精英蚂蚁才允许释放信息。排名第
位的蚂蚁乘以系数
4.自适应蚁群算法
自适应地改变的值。
的初始值
;当算法求得的最优值在
次循环内没有明显改进时,
减为
四、例题
旅行商问题(TSP问题)。假设有一个旅行商人要拜访全国31个省会城市,他需要选择所要走的路径,路径的限制是每个城市只能拜访一次,二球要最后回到原来出发的城市。路径的选择要求是:所选的路径的路程之和中的最小。
全国31个省会的坐标为[1304 2312;3639 1315;4177 2244;3712 1399;3488 1535;3326 1556;3238 1229;4196 1044;4312 790;4386 570;3007 1970;2562 1756;2788 1491;2381 1676;1332 695;3715 1678;3918 2179;4061 2370;3780 2212;3676 2578;4029 2838;4263 2931;3429 1908;3507 2376;3394 2643;3439 3201;2935 3240;3140 3550;2545 2357;2778 2826;2370 2975]
解:仿真过程如下:
(1)初始化蚂蚁个数 ,最大迭代次数
,信息素重要程度
,启发式因子重要程度
,信息素蒸发系数
,信息素增加强度系数
。
(2)将m个蚂蚁置于n个城市,计算待选城市的概率分布,m只蚂蚁按概率函数选择下一座城市,完成各自的周游。
(3)记录本次迭代最佳路线,更新信息素,禁忌表清零
(4)判断是否满足终止条件:若满足,则结束搜索过程,输出优化值;若不满足,则继续进行迭代优化
%%%%%%%%%%%%%%%%%%%%蚁群算法求函数极值%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%初始化%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all; %清除所有变量
close all; %清图
clc; %清屏
m=20; %蚂蚁个数
G_max=200; %最大迭代次数
Rho=0.9; %信息素蒸发系数
P0=0.2; %转移概率常数
XMAX= 5; %搜索变量x最大值
XMIN= -5; %搜索变量x最小值
YMAX= 5; %搜索变量y最大值
YMIN= -5; %搜索变量y最小值
%%%%%%%%%%%%%%%%%随机设置蚂蚁初始位置%%%%%%%%%%%%%%%%%%%%%%
for i=1:m
X(i,1)=(XMIN+(XMAX-XMIN)*rand);
X(i,2)=(YMIN+(YMAX-YMIN)*rand);
Tau(i)=func(X(i,1),X(i,2));
end
step=0.1; %局部搜索步长
for NC=1:G_max
lamda=1/NC;
[Tau_best,BestIndex]=min(Tau);
%%%%%%%%%%%%%%%%%%计算状态转移概率%%%%%%%%%%%%%%%%%%%%
for i=1:m
P(NC,i)=(Tau(BestIndex)-Tau(i))/Tau(BestIndex);
end
%%%%%%%%%%%%%%%%%%%%%%位置更新%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:m
%%%%%%%%%%%%%%%%%局部搜索%%%%%%%%%%%%%%%%%%%%%%
if P(NC,i)<P0
temp1=X(i,1)+(2*rand-1)*step*lamda;
temp2=X(i,2)+(2*rand-1)*step*lamda;
else
%%%%%%%%%%%%%%%%全局搜索%%%%%%%%%%%%%%%%%%%%%%%
temp1=X(i,1)+(XMAX-XMIN)*(rand-0.5);
temp2=X(i,2)+(YMAX-YMIN)*(rand-0.5);
end
%%%%%%%%%%%%%%%%%%%%%边界处理%%%%%%%%%%%%%%%%%%%%%%%
if temp1<XMIN
temp1=XMIN;
end
if temp1>XMAX
temp1=XMAX;
end
if temp2<YMIN
temp2=YMIN;
end
if temp2>YMAX
temp2=YMAX;
end
%%%%%%%%%%%%%%%%%%蚂蚁判断是否移动%%%%%%%%%%%%%%%%%%
if func(temp1,temp2)<func(X(i,1),X(i,2))
X(i,1)=temp1;
X(i,2)=temp2;
end
end
%%%%%%%%%%%%%%%%%%%%%%%更新信息素%%%%%%%%%%%%%%%%%%%%%%%
for i=1:m
Tau(i)=(1-Rho)*Tau(i)+func(X(i,1),X(i,2));
end
[value,index]=min(Tau);
trace(NC)=func(X(index,1),X(index,2));
end
[min_value,min_index]=min(Tau);
minX=X(min_index,1); %最优变量
minY=X(min_index,2); %最优变量
minValue=func(X(min_index,1),X(min_index,2)); %最优值
figure
plot(trace)
xlabel('搜索次数');
ylabel('适应度值');
title('适应度进化曲线')
%%%%%%%%%%%目标函数
%%%%%%%%%%%%%%%%%%%%%%%适应度函数%%%%%%%%%%%%%%%%%%%%%%%
function value=func(x,y)
value =20*(x^2-y^2)^2-(1-y)^2-3*(1+y)^2+0.3;
end