4.执行辗转相除法第四步
F 3 = Q 4 × F 4 + F 5 deg ( F 3 ) = 5 deg ( F 4 ) = 4 deg ( F 5 ) = 3 F_{3} = Q_{4} \times F_{4} + F_{5}\ \ \ \ \ \ \ \ \ \ \deg\left( F_{3} \right) = 5\ \ \ \ \ \ \deg\left( F_{4} \right) = 4\ \ \ \ \ \ \deg\left( F_{5} \right) = 3 F3=Q4×F4+F5 deg(F3)=5 deg(F4)=4 deg(F5)=3
∣ S ′ ∣ = F 1 F 1 F 2 F 2 F 3 F 3 F 4 F 4 F 4 F 4 F 4 F 3 F 3 F 3 F 3 ∣ b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 0 0 0 e 4 e 3 e 2 e 1 e 0 0 0 0 0 0 0 0 0 0 0 0 e 4 e 3 e 2 e 1 e 0 0 0 0 0 0 0 0 0 0 0 0 e 4 e 3 e 2 e 1 e 0 0 0 0 0 0 0 0 0 0 0 0 e 4 e 3 e 2 e 1 e 0 0 0 0 0 0 0 0 0 0 0 0 e 4 e 3 e 2 e 1 e 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 ∣ = F 1 F 1 F 2 F 2 F 3 F 3 F 4 F 4 F 4 F 4 F 4 F 5 F 5 F 5 F 5 ∣ b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 0 0 0 e 4 e 3 e 2 e 1 e 0 0 0 0 0 0 0 0 0 0 0 0 e 4 e 3 e 2 e 1 e 0 0 0 0 0 0 0 0 0 0 0 0 e 4 e 3 e 2 e 1 e 0 0 0 0 0 0 0 0 0 0 0 0 e 4 e 3 e 2 e 1 e 0 0 0 0 0 0 0 0 0 0 0 0 e 4 e 3 e 2 e 1 e 0 0 0 0 0 0 0 0 0 f 3 f 2 f 1 f 0 0 0 0 0 0 0 0 0 0 0 0 0 f 3 f 2 f 1 f 0 0 0 0 0 0 0 0 0 0 0 0 0 f 3 f 2 f 1 f 0 0 0 0 0 0 0 0 0 0 0 0 0 f 3 f 2 f 1 f 0 ∣ \left| S^{'} \right| = \begin{matrix} \begin{matrix} F_{1} \\ F_{1} \\ F_{2} \\ F_{2} \\ F_{3} \\ F_{3} \\ F_{4} \\ F_{4} \\ F_{4} \\ F_{4} \\ F_{4} \\ F_{3} \\ F_{3} \\ F_{3} \\ F_{3} \end{matrix} & \left| \begin{matrix} b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & e_{4} & e_{3} & e_{2} & e_{1} & e_{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{4} & e_{3} & e_{2} & e_{1} & e_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{4} & e_{3} & e_{2} & e_{1} & e_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{4} & e_{3} & e_{2} & e_{1} & e_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{4} & e_{3} & e_{2} & e_{1} & e_{0} \\ 0 & 0 & 0 & 0 & 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} \end{matrix} \right| \end{matrix} = \begin{matrix} \begin{matrix} F_{1} \\ F_{1} \\ F_{2} \\ F_{2} \\ F_{3} \\ F_{3} \\ F_{4} \\ F_{4} \\ F_{4} \\ F_{4} \\ F_{4} \\ F_{5} \\ F_{5} \\ F_{5} \\ F_{5} \end{matrix} & \left| \begin{matrix} b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & e_{4} & e_{3} & e_{2} & e_{1} & e_{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{4} & e_{3} & e_{2} & e_{1} & e_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{4} & e_{3} & e_{2} & e_{1} & e_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{4} & e_{3} & e_{2} & e_{1} & e_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{4} & e_{3} & e_{2} & e_{1} & e_{0} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & f_{3} & f_{2} & f_{1} & f_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & f_{3} & f_{2} & f_{1} & f_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & f_{3} & f_{2} & f_{1} & f_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & f_{3} & f_{2} & f_{1} & f_{0} \end{matrix} \right| \end{matrix} S′ =F1F1F2F2F3F3F4F4F4F4F4F3F3F3F3 b700000000000000b6b70000000000000b5b6c6000000000000b4b5c5c600000000000b3b4c4c5d50000000000b2b3c3c4d4d5000000000b1b2c2c3d3d4e40000d5000b0b1c1c2d2d3e3e4000d4d5000b0c0c1d1d2e2e3e400d3d4d50000c0d0d1e1e2e3e40d2d3d4d500000d0e0e1e2e3e4d1d2d3d40000000e0e1e2e3d0d1d2d300000000e0e1e20d0d1d2000000000e0e100d0d10000000000e0000d0 =F1F1F2F2F3F3F4F4F4F4F4F5F5F5F5 b700000000000000b6b70000000000000b5b6c6000000000000b4b5c5c600000000000b3b4c4c5d50000000000b2b3c3c4d4d5000000000b1b2c2c3d3d4e400000000b0b1c1c2d2d3e3e400000000b0c0c1d1d2e2e3e400f3000000c0d0d1e1e2e3e40f2f30000000d0e0e1e2e3e4f1f2f300000000e0e1e2e3f0f1f2f300000000e0e1e20f0f1f2000000000e0e100f0f10000000000e0000f0
对应子结式 S 3 S_{3} S3:
S 3 = ( − 1 ) ( m − 3 ) ( l − 3 ) d e t p o l ( F 1 F 1 F 1 F 1 F 1 F 0 F 0 F 0 F 0 ( b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 ) ) = ( − 1 ) ( m − 3 ) ( l − 3 ) d e t p o l ( F 1 F 1 F 2 F 2 F 3 F 3 F 4 F 4 F 5 ( b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 e 4 e 3 e 2 e 1 e 0 0 0 0 0 0 0 0 0 e 4 e 3 e 2 e 1 e 0 0 0 0 0 0 0 0 0 f 3 f 2 f 1 f 0 ) ) S_{3} = ( - 1)^{(m - 3)(l - 3)}detpol\begin{pmatrix} \begin{matrix} F_{1} \\ F_{1} \\ F_{1} \\ F_{1} \\ F_{1} \\ F_{0} \\ F_{0} \\ F_{0} \\ F_{0} \end{matrix} & \begin{pmatrix} b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 \\ 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 \\ 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\ 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} \\ a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 & 0 \\ 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 \\ 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 \\ 0 & 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} \end{pmatrix} \end{pmatrix} = ( - 1)^{(m - 3)(l - 3)}detpol\begin{pmatrix} \begin{matrix} F_{1} \\ F_{1} \\ F_{2} \\ F_{2} \\ F_{3} \\ F_{3} \\ F_{4} \\ F_{4} \\ F_{5} \end{matrix} & \begin{pmatrix} b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 \\ 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & e_{4} & e_{3} & e_{2} & e_{1} & e_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{4} & e_{3} & e_{2} & e_{1} & e_{0} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & f_{3} & f_{2} & f_{1} & f_{0} \end{pmatrix} \end{pmatrix} S3=(−1)(m−3)(l−3)detpol F1F1F1F1F1F0F0F0F0 b70000a8000b6b7000a7a800b5b6b700a6a7a80b4b5b6b70a5a6a7a8b3b4b5b6b7a4a5a6a7b2b3b4b5b6a3a4a5a6b1b2b3b4b5a2a3a4a5b0b1b2b3b4a1a2a3a40b0b1b2b3a0a1a2a300b0b1b20a0a1a2000b0b100a0a10000b0000a0 =(−1)(m−3)(l−3)detpol F1F1F2F2F3F3F4F4F5 b700000000b6b70000000b5b6c6000000b4b5c5c600000b3b4c4c5d50000b2b3c3c4d4d5000b1b2c2c3d3d4e400b0b1c1c2d2d3e3e400b0c0c1d1d2e2e3f3000c0d0d1e1e2f200000d0e0e1f10000000e0f0
5.执行辗转相除法第五步
F 4 = Q 5 × F 5 + F 6 deg ( F 4 ) = 4 deg ( F 5 ) = 3 deg ( F 6 ) = 2 F_{4} = Q_{5} \times F_{5} + F_{6}\ \ \ \ \ \ \ \ \ \ \deg\left( F_{4} \right) = 4\ \ \ \ \ \ \deg\left( F_{5} \right) = 3\ \ \ \ \ \ \deg\left( F_{6} \right) = 2 F4=Q5×F5+F6 deg(F4)=4 deg(F5)=3 deg(F6)=2
∣ S ′ ∣ = F 1 F 1 F 2 F 2 F 3 F 3 F 4 F 4 F 5 F 5 F 5 F 5 F 4 F 4 F 4 ∣ b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 0 0 0 e 4 e 3 e 2 e 1 e 0 0 0 0 0 0 0 0 0 0 0 0 e 4 e 3 e 2 e 1 e 0 0 0 0 0 0 0 0 0 0 0 0 f 3 f 2 f 1 f 0 0 0 0 0 0 0 0 0 0 0 0 0 f 3 f 2 f 1 f 0 0 0 0 0 0 0 0 0 0 0 0 0 f 3 f 2 f 1 f 0 0 0 0 0 0 0 0 0 0 0 0 0 f 3 f 2 f 1 f 0 0 0 0 0 0 0 0 0 e 4 e 3 e 2 e 1 e 0 0 0 0 0 0 0 0 0 0 0 0 e 4 e 3 e 2 e 1 e 0 0 0 0 0 0 0 0 0 0 0 0 e 4 e 3 e 2 e 1 e 0 ∣ = F 1 F 1 F 2 F 2 F 3 F 3 F 4 F 4 F 5 F 5 F 5 F 5 F 6 F 6 F 6 ∣ b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 0 0 0 e 4 e 3 e 2 e 1 e 0 0 0 0 0 0 0 0 0 0 0 0 e 4 e 3 e 2 e 1 e 0 0 0 0 0 0 0 0 0 0 0 0 f 3 f 2 f 1 f 0 0 0 0 0 0 0 0 0 0 0 0 0 f 3 f 2 f 1 f 0 0 0 0 0 0 0 0 0 0 0 0 0 f 3 f 2 f 1 f 0 0 0 0 0 0 0 0 0 0 0 0 0 f 3 f 2 f 1 f 0 0 0 0 0 0 0 0 0 0 0 g 2 g 1 g 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g 2 g 1 g 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g 2 g 1 g 0 ∣ \left| S^{'} \right| = \begin{matrix} \begin{matrix} F_{1} \\ F_{1} \\ F_{2} \\ F_{2} \\ F_{3} \\ F_{3} \\ F_{4} \\ F_{4} \\ F_{5} \\ F_{5} \\ F_{5} \\ F_{5} \\ F_{4} \\ F_{4} \\ F_{4} \end{matrix} & \left| \begin{matrix} b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & e_{4} & e_{3} & e_{2} & e_{1} & e_{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{4} & e_{3} & e_{2} & e_{1} & e_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & f_{3} & f_{2} & f_{1} & f_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & f_{3} & f_{2} & f_{1} & f_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & f_{3} & f_{2} & f_{1} & f_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & f_{3} & f_{2} & f_{1} & f_{0} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{4} & e_{3} & e_{2} & e_{1} & e_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{4} & e_{3} & e_{2} & e_{1} & e_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{4} & e_{3} & e_{2} & e_{1} & e_{0} \end{matrix} \right| \end{matrix} = \begin{matrix} \begin{matrix} F_{1} \\ F_{1} \\ F_{2} \\ F_{2} \\ F_{3} \\ F_{3} \\ F_{4} \\ F_{4} \\ F_{5} \\ F_{5} \\ F_{5} \\ F_{5} \\ F_{6} \\ F_{6} \\ F_{6} \end{matrix} & \left| \begin{matrix} b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & e_{4} & e_{3} & e_{2} & e_{1} & e_{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{4} & e_{3} & e_{2} & e_{1} & e_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & f_{3} & f_{2} & f_{1} & f_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & f_{3} & f_{2} & f_{1} & f_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & f_{3} & f_{2} & f_{1} & f_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & f_{3} & f_{2} & f_{1} & f_{0} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{2} & g_{1} & g_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{2} & g_{1} & g_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{2} & g_{1} & g_{0} \end{matrix} \right| \end{matrix} S′ =F1F1F2F2F3F3F4F4F5F5F5F5F4F4F4 b700000000000000b6b70000000000000b5b6c6000000000000b4b5c5c600000000000b3b4c4c5d50000000000b2b3c3c4d4d5000000000b1b2c2c3d3d4e400000000b0b1c1c2d2d3e3e400000000b0c0c1d1d2e2e3f3000e400000c0d0d1e1e2f2f300e3e4000000d0e0e1f1f2f30e2e3e40000000e0f0f1f2f3e1e2e3000000000f0f1f2e0e1e20000000000f0f10e0e100000000000f000e0 =F1F1F2F2F3F3F4F4F5F5F5F5F6F6F6 b700000000000000b6b70000000000000b5b6c6000000000000b4b5c5c600000000000b3b4c4c5d50000000000b2b3c3c4d4d5000000000b1b2c2c3d3d4e400000000b0b1c1c2d2d3e3e400000000b0c0c1d1d2e2e3f3000000000c0d0d1e1e2f2f30000000000d0e0e1f1f2f30g2000000000e0f0f1f2f3g1g20000000000f0f1f2g0g1g20000000000f0f10g0g100000000000f000g0
对应子结式 S 2 S_{2} S2:
S 2 = ( − 1 ) ( m − 2 ) ( l − 2 ) d e t p o l ( F 1 F 1 F 1 F 1 F 1 F 1 F 0 F 0 F 0 F 0 F 0 ( b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 ) ) = ( − 1 ) ( m − 2 ) ( l − 2 ) d e t p o l ( F 1 F 1 F 2 F 2 F 3 F 3 F 4 F 4 F 5 F 5 F 6 ∣ b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 0 e 4 e 3 e 2 e 1 e 0 0 0 0 0 0 0 0 0 0 e 4 e 3 e 2 e 1 e 0 0 0 0 0 0 0 0 0 0 f 3 f 2 f 1 f 0 0 0 0 0 0 0 0 0 0 0 f 3 f 2 f 1 f 0 0 0 0 0 0 0 0 0 0 0 g 2 g 1 g 0 ∣ ) S_{2} = ( - 1)^{(m - 2)(l - 2)}detpol\begin{pmatrix} \begin{matrix} F_{1} \\ F_{1} \\ F_{1} \\ F_{1} \\ F_{1} \\ F_{1} \\ F_{0} \\ F_{0} \\ F_{0} \\ F_{0} \\ F_{0} \end{matrix} & \begin{pmatrix} b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} \\ a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 & 0 & 0 \\ 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 & 0 \\ 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 \\ 0 & 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 \\ 0 & 0 & 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} \end{pmatrix} \end{pmatrix} = ( - 1)^{(m - 2)(l - 2)}detpol\begin{pmatrix} \begin{matrix} F_{1} \\ F_{1} \\ F_{2} \\ F_{2} \\ F_{3} \\ F_{3} \\ F_{4} \\ F_{4} \\ F_{5} \\ F_{5} \\ F_{6} \end{matrix} & \left| \begin{matrix} b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & e_{4} & e_{3} & e_{2} & e_{1} & e_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{4} & e_{3} & e_{2} & e_{1} & e_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & f_{3} & f_{2} & f_{1} & f_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & f_{3} & f_{2} & f_{1} & f_{0} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{2} & g_{1} & g_{0} \end{matrix} \right| \end{pmatrix} S2=(−1)(m−2)(l−2)detpol F1F1F1F1F1F1F0F0F0F0F0 b700000a80000b6b70000a7a8000b5b6b7000a6a7a800b4b5b6b700a5a6a7a80b3b4b5b6b70a4a5a6a7a8b2b3b4b5b6b7a3a4a5a6a7b1b2b3b4b5b6a2a3a4a5a6b0b1b2b3b4b5a1a2a3a4a50b0b1b2b3b4a0a1a2a3a400b0b1b2b30a0a1a2a3000b0b1b200a0a1a20000b0b1000a0a100000b00000a0 =(−1)(m−2)(l−2)detpol F1F1F2F2F3F3F4F4F5F5F6 b70000000000b6b7000000000b5b6c600000000b4b5c5c60000000b3b4c4c5d5000000b2b3c3c4d4d500000b1b2c2c3d3d4e40000b0b1c1c2d2d3e3e40000b0c0c1d1d2e2e3f300000c0d0d1e1e2f2f3000000d0e0e1f1f2g20000000e0f0f1g1000000000f0g0