import MNN
import cv2
import numpy as np
import time
def normlize_with_pad(img, width, height, ratio):
h, w = img.shape[:2] # 长边缩放为min_side
if h / w > height / width * ratio:
val = int(img[-1,-1])
try:
img = cv2.resize(img, (int(ratio * height * w // h), height))
img = cv2.copyMakeBorder(img, 0, 0, 0, (width - int(ratio * height * w // h)),
cv2.BORDER_CONSTANT, value=[0, 0, 0])
except Exception as e:
print('error image shape {} {}'.format(h, w))
img = cv2.resize(img, (width, height))
return img
def process(image_data, size):
image_resize = normlize_with_pad(image_data, size[1],size[0], 1)
input_data = np.array(image_resize)
# input_data = np.ascontiguousarray(input_data)
input_data = input_data.astype(np.float32)
input_data = input_data / 255
input_data = np.expand_dims(input_data, 0)
input_data = np.expand_dims(input_data, 0)
return input_data
def decode_out(str_index,logit, characters):
char_list = []
char_logit = []
for i in range(len(str_index)):
if str_index[i] != 0 and (not (i > 0 and str_index[i - 1] == str_index[i])):
char_list.append(characters[str_index[i]-1])
char_logit.append(logit[i].numpy())
# char_l=1
# for charl in char_logit:
# char_l*=charl
# # print(char_l)
# if not type(char_l)==int:
# char_l=char_l.numpy()
# if char_l.ndim>0:
# char_l=char_l[0]
# print(char_logit)
char_l=np.mean(char_logit)
return ''.join(char_list),char_l
if __name__ == "__main__":
import torch
model_path = 'densenet_rnn.mnn'
# image_path = '61c785d7180e455aa6a7f892a44b733f_0_1713158555.jpg'
image_path='OCRAExtended/0.jpg'
resize = (32, 320)
# characters= '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz[!"#$%&()*+.,/:;<=>?@\\^-_`{|}~]'
characters= '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz/:-'
# characters= '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ'
t1 = time.time()
# (1) load model
net = MNN.nn.load_module_from_file(model_path, ["images"], ["outputs"])
# net = MNN.nn.load_module_from_file(model_path, ["Input:0"], ["model/swin_tiny_patch4_window7_224/out/truediv:0"])
# preprocess
print(image_path)
image_data = cv2.imread(image_path,0)
input_data = process(image_data, resize)
# (2) 构建一个Var类型的占位符来保存numpy,placeholder(shape, format, dtype)
# print(input_data.shape) #(1, 1, 320, 32)
input_var = MNN.expr.placeholder(input_data.shape, MNN.expr.NCHW)
input_var.write(input_data)
# (3) cv2 read shape is NHWC, Module's need is NC4HW4, convert it
input_var = MNN.expr.convert(input_var, MNN.expr.NC4HW4)
# print(input_var.shape)
# (4) inference
output_var = net.forward(input_var)
# print(output_var.shape) #[1, 160, 37]
# (5) the output from net may be NC4HW4, turn to linear layout
# output_var = MNN.expr.convert(output_var, MNN.expr.NCHW)
# print(output_var.shape)
output_var = output_var.read()
output_var = torch.tensor(output_var)
# print(output_var.shape) #(80, 1, 66) #torch.Size([1, 160, 77])
logit, preds = output_var.max(2)
logit = torch.exp(logit)
preds = preds.transpose(1, 0).contiguous().view(-1)
# print(preds)
lab2str,char_logit = decode_out(preds,logit,characters )
# lab2str,char_logit = decode_out(preds,logit[0],characters )
print(lab2str,char_logit)
t2 = time.time()
# ./MNNConvert -f ONNX --modelFile "kang-slim.onnx" --MNNModel "kang-slim.mnn" --bizCode MNN
参考文章:Ubuntu18.04上MNN编译与使用(Python版)_mnn使用python cpu推理 demo-CSDN博客