[CUDA编程] cuda graph优化心得

发布于:2024-06-15 ⋅ 阅读:(57) ⋅ 点赞:(0)

CUDA Graph

1. cuda graph的使用场景

  • cuda graph在一个kernel要多次执行,且每次只更改kernel 参数或者不更改参数时使用效果更加;但是如果将graph替换已有的kernel组合,且没有重复执行,感觉效率不是很高反而低于原始的kernel调用;【此外, graph启动还需要耗时】

2. 使用方式

2.1 stream capture 方式

  • 基本范式, 通过start capture 和end Capture 以及 构建graph exec方式实现graph执行,效率不高;用于graph多次执行的情况。ref: cuda_sample: jacobi
  • 不需要GraphCreate 一个graph对象。cudaStreamEndCapture 会直接创建一个graph。
checkCudaErrors(
        cudaStreamBeginCapture(stream, cudaStreamCaptureModeGlobal));
    checkCudaErrors(cudaMemsetAsync(d_sum, 0, sizeof(double), stream));
    if ((k & 1) == 0) {
      JacobiMethod<<<nblocks, nthreads, 0, stream>>>(A, b, conv_threshold, x,
                                                     x_new, d_sum);
    } else {
      JacobiMethod<<<nblocks, nthreads, 0, stream>>>(A, b, conv_threshold,
                                                     x_new, x, d_sum);
    }
    checkCudaErrors(cudaMemcpyAsync(&sum, d_sum, sizeof(double),
                                    cudaMemcpyDeviceToHost, stream));
    checkCudaErrors(cudaStreamEndCapture(stream, &graph));

    if (graphExec == NULL) {
      checkCudaErrors(cudaGraphInstantiate(&graphExec, graph, NULL, NULL, 0));
    } else {
      cudaGraphExecUpdateResult updateResult_out;
      checkCudaErrors(
          cudaGraphExecUpdate(graphExec, graph, NULL, &updateResult_out));
      if (updateResult_out != cudaGraphExecUpdateSuccess) {
        if (graphExec != NULL) {
          checkCudaErrors(cudaGraphExecDestroy(graphExec));
        }
        printf("k = %d graph update failed with error - %d\n", k,
               updateResult_out);
        checkCudaErrors(cudaGraphInstantiate(&graphExec, graph, NULL, NULL, 0));
      }
    }
    checkCudaErrors(cudaGraphLaunch(graphExec, stream));
    checkCudaErrors(cudaStreamSynchronize(stream));


// 封装 capture过程
class MyCudaGraph {
 public:
  CudaGraph()
      : graph_(nullptr),
        graph_instance_(nullptr),
        stream_(nullptr),
        is_captured_(false) {
    RPV_CUDA_CHECK(cudaGraphCreate(&graph_, 0));
  }

  ~CudaGraph() {
    if (graph_ != nullptr) {
      RPV_CUDA_CHECK(cudaGraphDestroy(graph_));
    }
    if (graph_instance_ != nullptr) {
      RPV_CUDA_CHECK(cudaGraphExecDestroy(graph_instance_));
    }
  }

  void set_stream(const cudaStream_t& stream) { stream_ = stream; }
  const cudaGraph_t& graph() const { return graph_; }
  const cudaGraphExec_t& graph_instance() const { return graph_instance_; }
  void CaptureStart() const {
    RPV_CUDA_CHECK(
        cudaStreamBeginCapture(stream_, cudaStreamCaptureModeGlobal));
  }
  void CaptureEnd() const {
  	// stream 捕捉模式不需要cudaGraphCreate 来初始化 graph_.
    RPV_CUDA_CHECK(cudaStreamEndCapture(stream_, &graph_));
  }
  bool IsCaptured() const { return is_captured_; }

  void Launch() const {
    if (graph_instance_ == nullptr) {
      RPV_CUDA_CHECK(
          cudaGraphInstantiate(&graph_instance_, graph_, nullptr, nullptr, 0));
    }
    RPV_CUDA_CHECK(cudaGraphLaunch(graph_instance_, stream_));
  }
  void UpdateLaunch() const {
    cudaGraphExecUpdateResult update_result;
    // 当第一次构建完graph_instance_(cudaGraphExec_t)后, 后续捕捉都只需要更新graphexec 即可。
    RPV_CUDA_CHECK(
        cudaGraphExecUpdate(graph_instance_, graph_, nullptr, &update_result));
    if (update_result != cudaGraphExecUpdateSuccess) {
      if (graph_instance_ != nullptr) { // 注意,如果更新失败,则需要将graph_instance_ 删除,并用cudaGraphInstantiate重新生成一个新的graph exec对象。
        RPV_CUDA_CHECK(cudaGraphExecDestroy(graph_instance_));
      }
      LOG(WARNING) << "cuda graph update failed.";
      RPV_CUDA_CHECK(
          cudaGraphInstantiate(&graph_instance_, graph_, nullptr, nullptr, 0));
    }
    RPV_CUDA_CHECK(cudaGraphLaunch(graph_instance_, stream_)); // 执行graph是通过cudaGraphLaunch 执行cudaGraphExec_t对象来实现
  }

  void AddKernelNode(cudaGraphNode_t& node, cudaKernelNodeParams& param) const {
    node_ = node;
    cudaGraphAddKernelNode(&node_, graph_, nullptr, 0, &param); // 往graph中添加node_,注意需要提前cudaGraphCreate graph才行。
  }

  void ExecKernelNodeSetParams(cudaKernelNodeParams& param) const {
    cudaGraphExecKernelNodeSetParams(graph_instance_, node_, &param);
    RPV_CUDA_CHECK(cudaGraphLaunch(graph_instance_, stream_));
  }

 private:
  mutable cudaGraphNode_t node_;
  mutable cudaGraph_t graph_;
  mutable cudaGraphExec_t graph_instance_;
  mutable cudaStream_t stream_;
  mutable bool is_captured_;
  DISALLOW_COPY_AND_ASSIGN(CudaGraph);
};

2.2 Node Param方式

  • ref: cuda sample: jacobi
  • 注意node的方式需要 构建每个node的依赖node。并且通过更新kernel param的方式来更新graph exec, 效率可能更高。但是
cudaGraph_t graph;
  cudaGraphExec_t graphExec = NULL;

  double sum = 0.0;
  double *d_sum = NULL;
  checkCudaErrors(cudaMalloc(&d_sum, sizeof(double)));

  std::vector<cudaGraphNode_t> nodeDependencies;
  cudaGraphNode_t memcpyNode, jacobiKernelNode, memsetNode;
  cudaMemcpy3DParms memcpyParams = {0};
  cudaMemsetParams memsetParams = {0};

  memsetParams.dst = (void *)d_sum;
  memsetParams.value = 0;
  memsetParams.pitch = 0;
  // elementSize can be max 4 bytes, so we take sizeof(float) and width=2
  memsetParams.elementSize = sizeof(float);
  memsetParams.width = 2;
  memsetParams.height = 1;

  checkCudaErrors(cudaGraphCreate(&graph, 0));
  checkCudaErrors(
      cudaGraphAddMemsetNode(&memsetNode, graph, NULL, 0, &memsetParams));
  nodeDependencies.push_back(memsetNode);

  cudaKernelNodeParams NodeParams0, NodeParams1;
  NodeParams0.func = (void *)JacobiMethod;
  NodeParams0.gridDim = nblocks;
  NodeParams0.blockDim = nthreads;
  NodeParams0.sharedMemBytes = 0;
  void *kernelArgs0[6] = {(void *)&A, (void *)&b,     (void *)&conv_threshold,
                          (void *)&x, (void *)&x_new, (void *)&d_sum};
  NodeParams0.kernelParams = kernelArgs0;
  NodeParams0.extra = NULL;

  checkCudaErrors(
      cudaGraphAddKernelNode(&jacobiKernelNode, graph, nodeDependencies.data(),
                             nodeDependencies.size(), &NodeParams0));

  nodeDependencies.clear();
  nodeDependencies.push_back(jacobiKernelNode);

  memcpyParams.srcArray = NULL;
  memcpyParams.srcPos = make_cudaPos(0, 0, 0);
  memcpyParams.srcPtr = make_cudaPitchedPtr(d_sum, sizeof(double), 1, 1);
  memcpyParams.dstArray = NULL;
  memcpyParams.dstPos = make_cudaPos(0, 0, 0);
  memcpyParams.dstPtr = make_cudaPitchedPtr(&sum, sizeof(double), 1, 1);
  memcpyParams.extent = make_cudaExtent(sizeof(double), 1, 1);
  memcpyParams.kind = cudaMemcpyDeviceToHost;

  checkCudaErrors(
      cudaGraphAddMemcpyNode(&memcpyNode, graph, nodeDependencies.data(),
                             nodeDependencies.size(), &memcpyParams));

  checkCudaErrors(cudaGraphInstantiate(&graphExec, graph, NULL, NULL, 0));

  NodeParams1.func = (void *)JacobiMethod;
  NodeParams1.gridDim = nblocks;
  NodeParams1.blockDim = nthreads;
  NodeParams1.sharedMemBytes = 0;
  void *kernelArgs1[6] = {(void *)&A,     (void *)&b, (void *)&conv_threshold,
                          (void *)&x_new, (void *)&x, (void *)&d_sum};
  NodeParams1.kernelParams = kernelArgs1;
  NodeParams1.extra = NULL;

  int k = 0;
  for (k = 0; k < max_iter; k++) {
    checkCudaErrors(cudaGraphExecKernelNodeSetParams(
        graphExec, jacobiKernelNode,
        ((k & 1) == 0) ? &NodeParams0 : &NodeParams1));
    checkCudaErrors(cudaGraphLaunch(graphExec, stream));
    checkCudaErrors(cudaStreamSynchronize(stream));

    if (sum <= conv_threshold) {
      checkCudaErrors(cudaMemsetAsync(d_sum, 0, sizeof(double), stream));
      nblocks.x = (N_ROWS / nthreads.x) + 1;
      size_t sharedMemSize = ((nthreads.x / 32) + 1) * sizeof(double);
      if ((k & 1) == 0) {
        finalError<<<nblocks, nthreads, sharedMemSize, stream>>>(x_new, d_sum);
      } else {
        finalError<<<nblocks, nthreads, sharedMemSize, stream>>>(x, d_sum);
      }

      checkCudaErrors(cudaMemcpyAsync(&sum, d_sum, sizeof(double),
                                      cudaMemcpyDeviceToHost, stream));
      checkCudaErrors(cudaStreamSynchronize(stream));
      printf("GPU iterations : %d\n", k + 1);
      printf("GPU error : %.3e\n", sum);
      break;
    }
  }


  • 对比发现 graph 反而耗时更长
    在这里插入图片描述

2.3 通过传递kernel为指针,然后更改指针的值来是graph执行更高效

  • 官方其他实例,通过更新值
  • ref: mandrake: wtsne_gpu
    这个开源工程通过封装 device value为一个container,从而通过替换这个显存问题的值来重复执行graph. 效率更高。
// Start capture
    capture_stream.capture_start();
    // Y update
    wtsneUpdateYKernel<real_t>
        <<<block_count, block_size, 0, capture_stream.stream()>>>(
            device_ptrs.rng, get_node_table(), get_edge_table(), device_ptrs.Y,
            device_ptrs.I, device_ptrs.J, device_ptrs.Eq, device_ptrs.qsum,
            device_ptrs.qcount, device_ptrs.nn, device_ptrs.ne, eta0, nRepuSamp,
            device_ptrs.nsq, bInit, iter_d.data(), maxIter,
            device_ptrs.n_workers, n_clashes_d.data());

    // s (Eq) update
    cub::DeviceReduce::Sum(qsum_tmp_storage_.data(), qsum_tmp_storage_bytes_,
                           qsum_.data(), qsum_total_device_.data(),
                           qsum_.size(), capture_stream.stream());
    cub::DeviceReduce::Sum(
        qcount_tmp_storage_.data(), qcount_tmp_storage_bytes_, qcount_.data(),
        qcount_total_device_.data(), qcount_.size(), capture_stream.stream());
    update_eq<real_t><<<1, 1, 0, capture_stream.stream()>>>(
        device_ptrs.Eq, device_ptrs.nsq, qsum_total_device_.data(),
        qcount_total_device_.data(), iter_d.data());

    capture_stream.capture_end(graph.graph());
    // End capture

    // Main SCE loop - run captured graph maxIter times
    // NB: Here I have written the code so the kernel launch parameters (and all
    // CUDA API calls) are able to use the same parameters each loop, mainly by
    // using pointers to device memory, and two iter counters.
    // The alternative would be to use cudaGraphExecKernelNodeSetParams to
    // change the kernel launch parameters. See
    // 0c369b209ef69d91016bedd41ea8d0775879f153
    const auto start = std::chrono::steady_clock::now();
    for (iter_h = 0; iter_h < maxIter; ++iter_h) {
      graph.launch(graph_stream.stream());
      if (iter_h % MAX(1, maxIter / 1000) == 0) {
        // Update progress meter
        Eq_device_.get_value_async(&Eq_host_, graph_stream.stream()); // 只是更改kernel参数指针中的值
        n_clashes_d.get_value_async(&n_clashes_h, graph_stream.stream());
        real_t eta = eta0 * (1 - static_cast<real_t>(iter_h) / (maxIter - 1));

        // Check for interrupts while copying
        check_interrupts();

        // Make sure copies have finished
        graph_stream.sync();
        update_progress(iter_h, maxIter, eta, Eq_host_, write_per_worker,
                        n_clashes_h);
      }
      if (results->is_sample_frame(iter_h)) {
        Eq_device_.get_value_async(&Eq_host_, copy_stream.stream());
        update_frames(results, graph_stream, copy_stream, curr_iter, curr_Eq,
                      iter_h, Eq_host_);
      }
    }

2.4

  • 当连续执行graph多次,且存在kernel 参数更新的话,可以看到下一个graph启动与上一个graph执行存在并行,从而实现了graph的启动隐藏,并且graph执行要比kernel执行更加快,因此对于某个kernel重复执行多次且更改不大的情况下或者多流处理时,可以考虑用graph.
  • 比如一些固定输入的kernel 需要多次执行,且可以用stream并行,那么可以考虑用graph来高效执行。
    在这里插入图片描述

3. 不同版本的api

#if CUDA_VERSION < 12000
    cudaGraphExecUpdateResult update_result{};
    cudaGraphNode_t error_node = nullptr;
    OF_CUDA_CHECK(cudaGraphExecUpdate(graph_exec_, graph, &error_node, &update_result));
    if (update_result == cudaGraphExecUpdateSuccess) { return; }
#else
    cudaGraphExecUpdateResultInfo update_result{};  // 新版本使用这个结构体接受
    OF_CUDA_CHECK(cudaGraphExecUpdate(graph_exec_, graph, &update_result));
    if (update_result.result == cudaGraphExecUpdateSuccess) { return; }
#endif  // CUDA_VERSION < 12000

4. 官方文档cuda graph对engine的操作

  • nvidia-doc: https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#command-line-programs
// Call enqueueV3() once after an input shape change to update internal state.
context->enqueueV3(stream);

// Capture a CUDA graph instance
cudaGraph_t graph;
cudaGraphExec_t instance;
cudaStreamBeginCapture(stream, cudaStreamCaptureModeGlobal);
context->enqueueV3(stream);
cudaStreamEndCapture(stream, &graph);
cudaGraphInstantiate(&instance, graph, 0);