深度学习Day-21:ResNet与DenseNet结合

发布于:2024-06-28 ⋅ 阅读:(13) ⋅ 点赞:(0)

 🍨 本文为:[🔗365天深度学习训练营] 中的学习记录博客
 🍖 原作者:[K同学啊 | 接辅导、项目定制]

要求:

  1. 探索ResNet与DenseNet结合的可能性
  2. 根据模型特性构建新的模型框架
  3. 验证改进后模型的效果

一、 基础配置

  • 语言环境:Python3.8
  • 编译器选择:Pycharm
  • 深度学习环境:
    • torch==1.12.1+cu113
    • torchvision==0.13.1+cu113

二、 前期准备 

1.设置GPU

import pathlib
import torch
import torch.nn as nn
from torchvision import transforms, datasets

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

print(device)

2. 导入数据

本项目所采用的数据集未收录于公开数据中,故需要自己在文件目录中导入相应数据集合,并设置对应文件目录,以供后续学习过程中使用。

运行下述代码:

data_dir = './data/bird_photos'
data_dir = pathlib.Path(data_dir)

data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[2] for path in data_paths]
print(classeNames)

image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:", image_count)

得到如下输出:

['Bananaquit', 'Black Skimmer', 'Black Throated Bushtiti', 'Cockatoo']
图片总数为: 565

接下来,我们通过transforms.Compose对整个数据集进行预处理:

train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    # transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),  # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(  # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

test_transform = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),  # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(  # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder("./data/bird_photos/", transform=train_transforms)
print(total_data.class_to_idx)

得到如下输出:

{'Bananaquit': 0, 'Black Skimmer': 1, 'Black Throated Bushtiti': 2, 'Cockatoo': 3}

3. 划分数据集

 此处数据集需要做按比例划分的操作:

train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])

接下来,根据划分得到的训练集和验证集对数据集进行包装:

batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=0)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                      batch_size=batch_size,
                                      shuffle=True,
                                      num_workers=0)

并通过:

for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

输出测试数据集的数据分布情况:

Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

4.搭建模型

DPN网络通过High Order RNN(HORNN)将ResNet和DenseNet进行了融合,实现了ResNet特征复用及DenseNet特征生成,在保持了二者复用特征+挖掘特征能力的同时,避免了像原始DenseNet那样臃肿的结构。

1.模型搭建


class Block(nn.Module):
    def __init__(self, in_channel, mid_channel, out_channel, dense_channel, stride, groups, is_shortcut=False):
        # in_channel,是输入通道数,mid_channel是中间经历的通道数,out_channels是经过一次板块之后的输出通道数。
        # dense_channels设置这个参数的原因就是一边进行着resnet方式的卷积运算,另一边也同时进行着dense的卷积计算,之后特征图融合形成新的特征图
        super().__init__()
        self.is_shortcut = is_shortcut
        self.out_channel = out_channel
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channel, mid_channel, kernel_size=1, bias=False),
            nn.BatchNorm2d(mid_channel),
            nn.ReLU()
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(mid_channel, mid_channel, kernel_size=3, stride=stride, padding=1, groups=groups, bias=False),
            nn.BatchNorm2d(mid_channel),
            nn.ReLU()
        )
        self.conv3 = nn.Sequential(
            nn.Conv2d(mid_channel, out_channel + dense_channel, kernel_size=1, bias=False),
            nn.BatchNorm2d(out_channel + dense_channel)
        )
        if self.is_shortcut:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_channel, out_channel + dense_channel, kernel_size=3, padding=1, stride=stride, bias=False),
                nn.BatchNorm2d(out_channel + dense_channel)
            )
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        a = x
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        if self.is_shortcut:
            a = self.shortcut(a)
        d = self.out_channel
        x = torch.cat([a[:, :d, :, :] + x[:, :d, :, :], a[:, d:, :, :], x[:, d:, :, :]], dim=1)
        x = self.relu(x)
        return x


class DPN(nn.Module):
    def __init__(self, cfg):
        super(DPN, self).__init__()
        self.group = cfg['group']
        self.in_channel = cfg['in_channel']
        mid_channels = cfg['mid_channels']
        out_channels = cfg['out_channels']
        dense_channels = cfg['dense_channels']
        num = cfg['num']
        self.conv1 = nn.Sequential(
            nn.Conv2d(3, self.in_channel, 7, stride=2, padding=3, bias=False, padding_mode='zeros'),
            nn.BatchNorm2d(self.in_channel),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=0)
        )
        self.conv2 = self._make_layers(mid_channels[0], out_channels[0], dense_channels[0], num[0], stride=1)
        self.conv3 = self._make_layers(mid_channels[1], out_channels[1], dense_channels[1], num[1], stride=2)
        self.conv4 = self._make_layers(mid_channels[2], out_channels[2], dense_channels[2], num[2], stride=2)
        self.conv5 = self._make_layers(mid_channels[3], out_channels[3], dense_channels[3], num[3], stride=2)
        self.pool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(cfg['out_channels'][3] + (num[3] + 1) * cfg['dense_channels'][3], cfg['classes'])  # fc层需要计算

    def _make_layers(self, mid_channel, out_channel, dense_channel, num, stride=2):
        layers = []
        layers.append(Block(self.in_channel, mid_channel, out_channel, dense_channel, stride=stride, groups=self.group,
                            is_shortcut=True))
        # block_1里面is_shortcut=True就是resnet中的shortcut连接,将浅层的特征进行一次卷积之后与进行三次卷积的特征图相加
        # 后面几次相同的板块is_shortcut=False简单的理解就是一个多次重复的板块,第一次利用就可以满足浅层特征的利用,后面重复的不在需要
        self.in_channel = out_channel + dense_channel * 2
        # 由于里面包含dense这种一直在叠加的特征图计算,
        # 所以第一次是2倍的dense_channel,后面每次一都会多出1倍,所以有(i+2)*dense_channel
        for i in range(1, num):
            layers.append(Block(self.in_channel, mid_channel, out_channel, dense_channel, stride=1, groups=self.group))
            self.in_channel = self.in_channel + dense_channel
            # self.in_channel = out_channel + (i+2)*dense_channel
        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.conv4(x)
        x = self.conv5(x)
        x = self.pool(x)
        x = torch.flatten(x, start_dim=1)
        x = self.fc(x)
        return x


def DPN92(n_class=10):
    cfg = {
        'group': 32,
        'in_channel': 64,
        'mid_channels': (96, 192, 384, 768),
        'out_channels': (256, 512, 1024, 2048),
        'dense_channels': (16, 32, 24, 128),
        'num': (3, 4, 20, 3),
        'classes': (n_class)
    }
    return DPN(cfg)


def DPN98(n_class=10):
    cfg = {
        'group': 40,
        'in_channel': 96,
        'mid_channels': (160, 320, 640, 1280),
        'out_channels': (256, 512, 1024, 2048),
        'dense_channels': (16, 32, 32, 128),
        'num': (3, 6, 20, 3),
        'classes': (n_class)
    }
    return DPN(cfg)

2.查看模型信息

x = torch.randn(2, 3, 224, 224)
model = DPN98(4)
model.to(device)
import torchsummary as summary
summary.summary(model, (3, 224, 224))

得到如下输出:

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 96, 112, 112]          14,112
       BatchNorm2d-2         [-1, 96, 112, 112]             192
              ReLU-3         [-1, 96, 112, 112]               0
         MaxPool2d-4           [-1, 96, 55, 55]               0
            Conv2d-5          [-1, 160, 55, 55]          15,360
       BatchNorm2d-6          [-1, 160, 55, 55]             320
              ReLU-7          [-1, 160, 55, 55]               0
            Conv2d-8          [-1, 160, 55, 55]           5,760
       BatchNorm2d-9          [-1, 160, 55, 55]             320
             ReLU-10          [-1, 160, 55, 55]               0
           Conv2d-11          [-1, 272, 55, 55]          43,520
      BatchNorm2d-12          [-1, 272, 55, 55]             544
           Conv2d-13          [-1, 272, 55, 55]         235,008
      BatchNorm2d-14          [-1, 272, 55, 55]             544
             ReLU-15          [-1, 288, 55, 55]               0
            Block-16          [-1, 288, 55, 55]               0
           Conv2d-17          [-1, 160, 55, 55]          46,080
      BatchNorm2d-18          [-1, 160, 55, 55]             320
             ReLU-19          [-1, 160, 55, 55]               0
           Conv2d-20          [-1, 160, 55, 55]           5,760
      BatchNorm2d-21          [-1, 160, 55, 55]             320
             ReLU-22          [-1, 160, 55, 55]               0
           Conv2d-23          [-1, 272, 55, 55]          43,520
      BatchNorm2d-24          [-1, 272, 55, 55]             544
             ReLU-25          [-1, 304, 55, 55]               0
            Block-26          [-1, 304, 55, 55]               0
           Conv2d-27          [-1, 160, 55, 55]          48,640
      BatchNorm2d-28          [-1, 160, 55, 55]             320
             ReLU-29          [-1, 160, 55, 55]               0
           Conv2d-30          [-1, 160, 55, 55]           5,760
      BatchNorm2d-31          [-1, 160, 55, 55]             320
             ReLU-32          [-1, 160, 55, 55]               0
           Conv2d-33          [-1, 272, 55, 55]          43,520
      BatchNorm2d-34          [-1, 272, 55, 55]             544
             ReLU-35          [-1, 320, 55, 55]               0
            Block-36          [-1, 320, 55, 55]               0
           Conv2d-37          [-1, 320, 55, 55]         102,400
      BatchNorm2d-38          [-1, 320, 55, 55]             640
             ReLU-39          [-1, 320, 55, 55]               0
           Conv2d-40          [-1, 320, 28, 28]          23,040
      BatchNorm2d-41          [-1, 320, 28, 28]             640
             ReLU-42          [-1, 320, 28, 28]               0
           Conv2d-43          [-1, 544, 28, 28]         174,080
      BatchNorm2d-44          [-1, 544, 28, 28]           1,088
           Conv2d-45          [-1, 544, 28, 28]       1,566,720
      BatchNorm2d-46          [-1, 544, 28, 28]           1,088
             ReLU-47          [-1, 576, 28, 28]               0
            Block-48          [-1, 576, 28, 28]               0
           Conv2d-49          [-1, 320, 28, 28]         184,320
      BatchNorm2d-50          [-1, 320, 28, 28]             640
             ReLU-51          [-1, 320, 28, 28]               0
           Conv2d-52          [-1, 320, 28, 28]          23,040
      BatchNorm2d-53          [-1, 320, 28, 28]             640
             ReLU-54          [-1, 320, 28, 28]               0
           Conv2d-55          [-1, 544, 28, 28]         174,080
      BatchNorm2d-56          [-1, 544, 28, 28]           1,088
             ReLU-57          [-1, 608, 28, 28]               0
            Block-58          [-1, 608, 28, 28]               0
           Conv2d-59          [-1, 320, 28, 28]         194,560
      BatchNorm2d-60          [-1, 320, 28, 28]             640
             ReLU-61          [-1, 320, 28, 28]               0
           Conv2d-62          [-1, 320, 28, 28]          23,040
      BatchNorm2d-63          [-1, 320, 28, 28]             640
             ReLU-64          [-1, 320, 28, 28]               0
           Conv2d-65          [-1, 544, 28, 28]         174,080
      BatchNorm2d-66          [-1, 544, 28, 28]           1,088
             ReLU-67          [-1, 640, 28, 28]               0
            Block-68          [-1, 640, 28, 28]               0
           Conv2d-69          [-1, 320, 28, 28]         204,800
      BatchNorm2d-70          [-1, 320, 28, 28]             640
             ReLU-71          [-1, 320, 28, 28]               0
           Conv2d-72          [-1, 320, 28, 28]          23,040
      BatchNorm2d-73          [-1, 320, 28, 28]             640
             ReLU-74          [-1, 320, 28, 28]               0
           Conv2d-75          [-1, 544, 28, 28]         174,080
      BatchNorm2d-76          [-1, 544, 28, 28]           1,088
             ReLU-77          [-1, 672, 28, 28]               0
            Block-78          [-1, 672, 28, 28]               0
           Conv2d-79          [-1, 320, 28, 28]         215,040
      BatchNorm2d-80          [-1, 320, 28, 28]             640
             ReLU-81          [-1, 320, 28, 28]               0
           Conv2d-82          [-1, 320, 28, 28]          23,040
      BatchNorm2d-83          [-1, 320, 28, 28]             640
             ReLU-84          [-1, 320, 28, 28]               0
           Conv2d-85          [-1, 544, 28, 28]         174,080
      BatchNorm2d-86          [-1, 544, 28, 28]           1,088
             ReLU-87          [-1, 704, 28, 28]               0
            Block-88          [-1, 704, 28, 28]               0
           Conv2d-89          [-1, 320, 28, 28]         225,280
      BatchNorm2d-90          [-1, 320, 28, 28]             640
             ReLU-91          [-1, 320, 28, 28]               0
           Conv2d-92          [-1, 320, 28, 28]          23,040
      BatchNorm2d-93          [-1, 320, 28, 28]             640
             ReLU-94          [-1, 320, 28, 28]               0
           Conv2d-95          [-1, 544, 28, 28]         174,080
      BatchNorm2d-96          [-1, 544, 28, 28]           1,088
             ReLU-97          [-1, 736, 28, 28]               0
            Block-98          [-1, 736, 28, 28]               0
           Conv2d-99          [-1, 640, 28, 28]         471,040
     BatchNorm2d-100          [-1, 640, 28, 28]           1,280
            ReLU-101          [-1, 640, 28, 28]               0
          Conv2d-102          [-1, 640, 14, 14]          92,160
     BatchNorm2d-103          [-1, 640, 14, 14]           1,280
            ReLU-104          [-1, 640, 14, 14]               0
          Conv2d-105         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-106         [-1, 1056, 14, 14]           2,112
          Conv2d-107         [-1, 1056, 14, 14]       6,994,944
     BatchNorm2d-108         [-1, 1056, 14, 14]           2,112
            ReLU-109         [-1, 1088, 14, 14]               0
           Block-110         [-1, 1088, 14, 14]               0
          Conv2d-111          [-1, 640, 14, 14]         696,320
     BatchNorm2d-112          [-1, 640, 14, 14]           1,280
            ReLU-113          [-1, 640, 14, 14]               0
          Conv2d-114          [-1, 640, 14, 14]          92,160
     BatchNorm2d-115          [-1, 640, 14, 14]           1,280
            ReLU-116          [-1, 640, 14, 14]               0
          Conv2d-117         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-118         [-1, 1056, 14, 14]           2,112
            ReLU-119         [-1, 1120, 14, 14]               0
           Block-120         [-1, 1120, 14, 14]               0
          Conv2d-121          [-1, 640, 14, 14]         716,800
     BatchNorm2d-122          [-1, 640, 14, 14]           1,280
            ReLU-123          [-1, 640, 14, 14]               0
          Conv2d-124          [-1, 640, 14, 14]          92,160
     BatchNorm2d-125          [-1, 640, 14, 14]           1,280
            ReLU-126          [-1, 640, 14, 14]               0
          Conv2d-127         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-128         [-1, 1056, 14, 14]           2,112
            ReLU-129         [-1, 1152, 14, 14]               0
           Block-130         [-1, 1152, 14, 14]               0
          Conv2d-131          [-1, 640, 14, 14]         737,280
     BatchNorm2d-132          [-1, 640, 14, 14]           1,280
            ReLU-133          [-1, 640, 14, 14]               0
          Conv2d-134          [-1, 640, 14, 14]          92,160
     BatchNorm2d-135          [-1, 640, 14, 14]           1,280
            ReLU-136          [-1, 640, 14, 14]               0
          Conv2d-137         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-138         [-1, 1056, 14, 14]           2,112
            ReLU-139         [-1, 1184, 14, 14]               0
           Block-140         [-1, 1184, 14, 14]               0
          Conv2d-141          [-1, 640, 14, 14]         757,760
     BatchNorm2d-142          [-1, 640, 14, 14]           1,280
            ReLU-143          [-1, 640, 14, 14]               0
          Conv2d-144          [-1, 640, 14, 14]          92,160
     BatchNorm2d-145          [-1, 640, 14, 14]           1,280
            ReLU-146          [-1, 640, 14, 14]               0
          Conv2d-147         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-148         [-1, 1056, 14, 14]           2,112
            ReLU-149         [-1, 1216, 14, 14]               0
           Block-150         [-1, 1216, 14, 14]               0
          Conv2d-151          [-1, 640, 14, 14]         778,240
     BatchNorm2d-152          [-1, 640, 14, 14]           1,280
            ReLU-153          [-1, 640, 14, 14]               0
          Conv2d-154          [-1, 640, 14, 14]          92,160
     BatchNorm2d-155          [-1, 640, 14, 14]           1,280
            ReLU-156          [-1, 640, 14, 14]               0
          Conv2d-157         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-158         [-1, 1056, 14, 14]           2,112
            ReLU-159         [-1, 1248, 14, 14]               0
           Block-160         [-1, 1248, 14, 14]               0
          Conv2d-161          [-1, 640, 14, 14]         798,720
     BatchNorm2d-162          [-1, 640, 14, 14]           1,280
            ReLU-163          [-1, 640, 14, 14]               0
          Conv2d-164          [-1, 640, 14, 14]          92,160
     BatchNorm2d-165          [-1, 640, 14, 14]           1,280
            ReLU-166          [-1, 640, 14, 14]               0
          Conv2d-167         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-168         [-1, 1056, 14, 14]           2,112
            ReLU-169         [-1, 1280, 14, 14]               0
           Block-170         [-1, 1280, 14, 14]               0
          Conv2d-171          [-1, 640, 14, 14]         819,200
     BatchNorm2d-172          [-1, 640, 14, 14]           1,280
            ReLU-173          [-1, 640, 14, 14]               0
          Conv2d-174          [-1, 640, 14, 14]          92,160
     BatchNorm2d-175          [-1, 640, 14, 14]           1,280
            ReLU-176          [-1, 640, 14, 14]               0
          Conv2d-177         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-178         [-1, 1056, 14, 14]           2,112
            ReLU-179         [-1, 1312, 14, 14]               0
           Block-180         [-1, 1312, 14, 14]               0
          Conv2d-181          [-1, 640, 14, 14]         839,680
     BatchNorm2d-182          [-1, 640, 14, 14]           1,280
            ReLU-183          [-1, 640, 14, 14]               0
          Conv2d-184          [-1, 640, 14, 14]          92,160
     BatchNorm2d-185          [-1, 640, 14, 14]           1,280
            ReLU-186          [-1, 640, 14, 14]               0
          Conv2d-187         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-188         [-1, 1056, 14, 14]           2,112
            ReLU-189         [-1, 1344, 14, 14]               0
           Block-190         [-1, 1344, 14, 14]               0
          Conv2d-191          [-1, 640, 14, 14]         860,160
     BatchNorm2d-192          [-1, 640, 14, 14]           1,280
            ReLU-193          [-1, 640, 14, 14]               0
          Conv2d-194          [-1, 640, 14, 14]          92,160
     BatchNorm2d-195          [-1, 640, 14, 14]           1,280
            ReLU-196          [-1, 640, 14, 14]               0
          Conv2d-197         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-198         [-1, 1056, 14, 14]           2,112
            ReLU-199         [-1, 1376, 14, 14]               0
           Block-200         [-1, 1376, 14, 14]               0
          Conv2d-201          [-1, 640, 14, 14]         880,640
     BatchNorm2d-202          [-1, 640, 14, 14]           1,280
            ReLU-203          [-1, 640, 14, 14]               0
          Conv2d-204          [-1, 640, 14, 14]          92,160
     BatchNorm2d-205          [-1, 640, 14, 14]           1,280
            ReLU-206          [-1, 640, 14, 14]               0
          Conv2d-207         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-208         [-1, 1056, 14, 14]           2,112
            ReLU-209         [-1, 1408, 14, 14]               0
           Block-210         [-1, 1408, 14, 14]               0
          Conv2d-211          [-1, 640, 14, 14]         901,120
     BatchNorm2d-212          [-1, 640, 14, 14]           1,280
            ReLU-213          [-1, 640, 14, 14]               0
          Conv2d-214          [-1, 640, 14, 14]          92,160
     BatchNorm2d-215          [-1, 640, 14, 14]           1,280
            ReLU-216          [-1, 640, 14, 14]               0
          Conv2d-217         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-218         [-1, 1056, 14, 14]           2,112
            ReLU-219         [-1, 1440, 14, 14]               0
           Block-220         [-1, 1440, 14, 14]               0
          Conv2d-221          [-1, 640, 14, 14]         921,600
     BatchNorm2d-222          [-1, 640, 14, 14]           1,280
            ReLU-223          [-1, 640, 14, 14]               0
          Conv2d-224          [-1, 640, 14, 14]          92,160
     BatchNorm2d-225          [-1, 640, 14, 14]           1,280
            ReLU-226          [-1, 640, 14, 14]               0
          Conv2d-227         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-228         [-1, 1056, 14, 14]           2,112
            ReLU-229         [-1, 1472, 14, 14]               0
           Block-230         [-1, 1472, 14, 14]               0
          Conv2d-231          [-1, 640, 14, 14]         942,080
     BatchNorm2d-232          [-1, 640, 14, 14]           1,280
            ReLU-233          [-1, 640, 14, 14]               0
          Conv2d-234          [-1, 640, 14, 14]          92,160
     BatchNorm2d-235          [-1, 640, 14, 14]           1,280
            ReLU-236          [-1, 640, 14, 14]               0
          Conv2d-237         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-238         [-1, 1056, 14, 14]           2,112
            ReLU-239         [-1, 1504, 14, 14]               0
           Block-240         [-1, 1504, 14, 14]               0
          Conv2d-241          [-1, 640, 14, 14]         962,560
     BatchNorm2d-242          [-1, 640, 14, 14]           1,280
            ReLU-243          [-1, 640, 14, 14]               0
          Conv2d-244          [-1, 640, 14, 14]          92,160
     BatchNorm2d-245          [-1, 640, 14, 14]           1,280
            ReLU-246          [-1, 640, 14, 14]               0
          Conv2d-247         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-248         [-1, 1056, 14, 14]           2,112
            ReLU-249         [-1, 1536, 14, 14]               0
           Block-250         [-1, 1536, 14, 14]               0
          Conv2d-251          [-1, 640, 14, 14]         983,040
     BatchNorm2d-252          [-1, 640, 14, 14]           1,280
            ReLU-253          [-1, 640, 14, 14]               0
          Conv2d-254          [-1, 640, 14, 14]          92,160
     BatchNorm2d-255          [-1, 640, 14, 14]           1,280
            ReLU-256          [-1, 640, 14, 14]               0
          Conv2d-257         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-258         [-1, 1056, 14, 14]           2,112
            ReLU-259         [-1, 1568, 14, 14]               0
           Block-260         [-1, 1568, 14, 14]               0
          Conv2d-261          [-1, 640, 14, 14]       1,003,520
     BatchNorm2d-262          [-1, 640, 14, 14]           1,280
            ReLU-263          [-1, 640, 14, 14]               0
          Conv2d-264          [-1, 640, 14, 14]          92,160
     BatchNorm2d-265          [-1, 640, 14, 14]           1,280
            ReLU-266          [-1, 640, 14, 14]               0
          Conv2d-267         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-268         [-1, 1056, 14, 14]           2,112
            ReLU-269         [-1, 1600, 14, 14]               0
           Block-270         [-1, 1600, 14, 14]               0
          Conv2d-271          [-1, 640, 14, 14]       1,024,000
     BatchNorm2d-272          [-1, 640, 14, 14]           1,280
            ReLU-273          [-1, 640, 14, 14]               0
          Conv2d-274          [-1, 640, 14, 14]          92,160
     BatchNorm2d-275          [-1, 640, 14, 14]           1,280
            ReLU-276          [-1, 640, 14, 14]               0
          Conv2d-277         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-278         [-1, 1056, 14, 14]           2,112
            ReLU-279         [-1, 1632, 14, 14]               0
           Block-280         [-1, 1632, 14, 14]               0
          Conv2d-281          [-1, 640, 14, 14]       1,044,480
     BatchNorm2d-282          [-1, 640, 14, 14]           1,280
            ReLU-283          [-1, 640, 14, 14]               0
          Conv2d-284          [-1, 640, 14, 14]          92,160
     BatchNorm2d-285          [-1, 640, 14, 14]           1,280
            ReLU-286          [-1, 640, 14, 14]               0
          Conv2d-287         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-288         [-1, 1056, 14, 14]           2,112
            ReLU-289         [-1, 1664, 14, 14]               0
           Block-290         [-1, 1664, 14, 14]               0
          Conv2d-291          [-1, 640, 14, 14]       1,064,960
     BatchNorm2d-292          [-1, 640, 14, 14]           1,280
            ReLU-293          [-1, 640, 14, 14]               0
          Conv2d-294          [-1, 640, 14, 14]          92,160
     BatchNorm2d-295          [-1, 640, 14, 14]           1,280
            ReLU-296          [-1, 640, 14, 14]               0
          Conv2d-297         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-298         [-1, 1056, 14, 14]           2,112
            ReLU-299         [-1, 1696, 14, 14]               0
           Block-300         [-1, 1696, 14, 14]               0
          Conv2d-301         [-1, 1280, 14, 14]       2,170,880
     BatchNorm2d-302         [-1, 1280, 14, 14]           2,560
            ReLU-303         [-1, 1280, 14, 14]               0
          Conv2d-304           [-1, 1280, 7, 7]         368,640
     BatchNorm2d-305           [-1, 1280, 7, 7]           2,560
            ReLU-306           [-1, 1280, 7, 7]               0
          Conv2d-307           [-1, 2176, 7, 7]       2,785,280
     BatchNorm2d-308           [-1, 2176, 7, 7]           4,352
          Conv2d-309           [-1, 2176, 7, 7]      33,214,464
     BatchNorm2d-310           [-1, 2176, 7, 7]           4,352
            ReLU-311           [-1, 2304, 7, 7]               0
           Block-312           [-1, 2304, 7, 7]               0
          Conv2d-313           [-1, 1280, 7, 7]       2,949,120
     BatchNorm2d-314           [-1, 1280, 7, 7]           2,560
            ReLU-315           [-1, 1280, 7, 7]               0
          Conv2d-316           [-1, 1280, 7, 7]         368,640
     BatchNorm2d-317           [-1, 1280, 7, 7]           2,560
            ReLU-318           [-1, 1280, 7, 7]               0
          Conv2d-319           [-1, 2176, 7, 7]       2,785,280
     BatchNorm2d-320           [-1, 2176, 7, 7]           4,352
            ReLU-321           [-1, 2432, 7, 7]               0
           Block-322           [-1, 2432, 7, 7]               0
          Conv2d-323           [-1, 1280, 7, 7]       3,112,960
     BatchNorm2d-324           [-1, 1280, 7, 7]           2,560
            ReLU-325           [-1, 1280, 7, 7]               0
          Conv2d-326           [-1, 1280, 7, 7]         368,640
     BatchNorm2d-327           [-1, 1280, 7, 7]           2,560
            ReLU-328           [-1, 1280, 7, 7]               0
          Conv2d-329           [-1, 2176, 7, 7]       2,785,280
     BatchNorm2d-330           [-1, 2176, 7, 7]           4,352
            ReLU-331           [-1, 2560, 7, 7]               0
           Block-332           [-1, 2560, 7, 7]               0
AdaptiveAvgPool2d-333           [-1, 2560, 1, 1]               0
          Linear-334                    [-1, 4]          10,244
================================================================
Total params: 95,008,356
Trainable params: 95,008,356
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 664.46
Params size (MB): 362.43
Estimated Total Size (MB): 1027.47
----------------------------------------------------------------

三、 训练模型 

1. 编写训练函数

def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)  # 批次数目, (size/batch_size,向上取整)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率

    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)

        # 计算预测误差
        pred = model(X)  # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失

        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()  # 反向传播
        optimizer.step()  # 每一步自动更新

        # 记录acc与loss
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()

    train_acc /= size
    train_loss /= num_batches

    return train_acc, train_loss

2. 编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)  # 批次数目
    test_loss, test_acc = 0, 0

    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)

            # 计算loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)

            test_loss += loss.item()
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc /= size
    test_loss /= num_batches

    return test_acc, test_loss

3.正式训练

import copy

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
loss_fn = nn.CrossEntropyLoss()  # 创建损失函数

epochs = 10

train_loss = []
train_acc = []
test_loss = []
test_acc = []

best_acc = 0  # 设置一个最佳准确率,作为最佳模型的判别指标

for epoch in range(epochs):
    # 更新学习率(使用自定义学习率时使用)
    # adjust_learning_rate(optimizer, epoch, learn_rate)

    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    # scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)

    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)

    # 保存最佳模型到 best_model
    if epoch_test_acc > best_acc:
        best_acc = epoch_test_acc
        best_model = copy.deepcopy(model)

    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)

    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']

    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss,
                          epoch_test_acc * 100, epoch_test_loss, lr))

# 保存最佳模型到文件中
PATH = './best_model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)

print('Done')

得到如下输出:

Epoch: 1, Train_acc:35.0%, Train_loss:1.512, Test_acc:15.0%, Test_loss:2.101, Lr:1.00E-04
Epoch: 2, Train_acc:55.1%, Train_loss:1.088, Test_acc:15.9%, Test_loss:5.737, Lr:1.00E-04
Epoch: 3, Train_acc:71.0%, Train_loss:0.773, Test_acc:39.8%, Test_loss:2.180, Lr:1.00E-04
Epoch: 4, Train_acc:76.3%, Train_loss:0.616, Test_acc:62.8%, Test_loss:1.222, Lr:1.00E-04
Epoch: 5, Train_acc:79.4%, Train_loss:0.565, Test_acc:61.1%, Test_loss:2.034, Lr:1.00E-04
Epoch: 6, Train_acc:79.6%, Train_loss:0.492, Test_acc:61.9%, Test_loss:1.497, Lr:1.00E-04
Epoch: 7, Train_acc:83.2%, Train_loss:0.480, Test_acc:69.0%, Test_loss:1.305, Lr:1.00E-04
Epoch: 8, Train_acc:84.1%, Train_loss:0.403, Test_acc:56.6%, Test_loss:2.690, Lr:1.00E-04
Epoch: 9, Train_acc:90.0%, Train_loss:0.304, Test_acc:71.7%, Test_loss:1.104, Lr:1.00E-04
Epoch:10, Train_acc:93.8%, Train_loss:0.190, Test_acc:55.8%, Test_loss:2.481, Lr:1.00E-04
Done
预测结果是:Cockatoo

Process finished with exit code 0

四、 结果可视化

1. Loss&Accuracy

import matplotlib.pyplot as plt
# 隐藏警告
import warnings
 
warnings.filterwarnings("ignore")  # 忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100  # 分辨率
 
epochs_range = range(epochs)
 
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
 
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
 
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

得到的可视化结果:

 2. 指定图片进行预测

首先,先定义出一个用于预测的函数:

 
from PIL import Image
 
classes = list(total_data.class_to_idx)
 
 
from PIL import Image
 
classes = list(total_data.class_to_idx)
 
 
def predict_one_image(image_path, model, transform, classes):
    test_img = Image.open(image_path).convert('RGB')
    plt.imshow(test_img)  # 展示预测的图片
 
    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)
 
    model.eval()
    output = model(img)
 
    _, pred = torch.max(output, 1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')

接着调用函数对指定图片进行预测:

# 预测训练集中的某张照片
predict_one_image(image_path='./data/bird_photos/Cockatoo/011.jpg',
                  model=model,
                  transform=train_transforms,
                  classes=classes)

得到如下结果:

预测结果是:Cockatoo

五、网络架构及参数


网站公告

今日签到

点亮在社区的每一天
去签到