算法基础--------【图论】

发布于:2024-07-02 ⋅ 阅读:(19) ⋅ 点赞:(0)

图论(待完善)

DFS:和回溯差不多
BFS:进while进行层序遍历

定义: 图论(Graph Theory)是研究图及其相关问题的数学理论。图由节点(顶点)和连接这些节点的边组成。图论的研究范围广泛,涉及路径、流、匹配、着色等诸多问题。

特点:
节点和边: 图论问题通常围绕节点(点)和边(线)展开,研究它们之间的关系。
图的种类: 包括无向图、有向图、加权图等不同类型的图,每种图有不同的应用场景。
算法: 常见的图论算法包括深度优先搜索(DFS)、广度优先搜索(BFS)、最短路径算法(如Dijkstra算法、Floyd-Warshall算法)、最小生成树算法(如Kruskal算法、Prim算法)等。(Dijkstra华子暑期实习笔试考了)
适用范围: 广泛用于网络分析、路径规划、资源分配等领域,如社交网络、交通系统、计算机网络等。(网络分析,路径规划这个真的很爱考)
示例: 最短路径问题(如寻找城市之间的最短路线)是一个经典的图论问题,通常用Dijkstra算法或Bellman-Ford算法解决。

【200】岛屿数量

要么用DFS的思想,要么用BFS层序遍历的思想
DFS:节点有四个方向,都遍历一遍,我写的逻辑是先下右上左。
dfs方法: 设目前指针指向一个岛屿中的某一点 (i, j),寻找包括此点的岛屿边界。
从 (i, j) 向此点的上下左右 (i+1,j),(i-1,j),(i,j+1),(i,j-1) 做深度搜索。
终止条件:
(i, j) 越过矩阵边界;
grid[i][j] == 0,代表此分支已越过岛屿边界。
搜索岛屿的同时,执行 grid[i][j] = ‘0’,即将岛屿所有节点删除,以免之后重复搜索相同岛屿。
主循环:
遍历整个矩阵,当遇到 grid[i][j] == ‘1’ 时,从此点开始做深度优先搜索 dfs,岛屿数 count + 1 且在深度优先搜索中删除此岛屿。
最终返回岛屿数 count 即可。

DFS:

class Solution {
public:
    int numIslands(vector<vector<char>>& grid) {
        if(grid.size() == 0 || grid[0].size() == 0)return 0;
        int m = grid.size(),n = grid[0].size();
        vector<vector<int>> vec;
        
        int res =0;
         for(int i =0;i<m;i++){
            vector<int> tempvec;
            for(int j=0;j<n;j++){   
                int tmp = grid[i][j]-'0';
                tempvec.push_back(tmp);//转化成int类型的
            }
            vec.push_back(tempvec);
        } 

        for(int i =0;i<m;i++){
            for(int j=0;j<n;j++){
                if( vec[i][j] == 1){
                    dfs(vec,i,j);//dfs的次数就是岛屿的数量
                    res++;
                }
              
            }
        } 
        return res;
    }   
private:
    void dfs(vector<vector<int>>& vec,int i, int j){
        if(i<0 || j<0 || i>vec.size()-1 || j>vec[0].size()-1)return;
        cout<<"(i,j) = "<<i<<j<<","<<vec[i][j]<<endl;
        if(vec[i][j] != 1)return;
    
        vec[i][j] =-1;//标记
        dfs(vec,i+1,j);
        dfs(vec,i,j+1);
        dfs(vec,i-1,j);
        dfs(vec,i,j-1);
    }
};
int main() {

    Solution s;
    vector<vector<char>> grid = {
    {'1','1','1','1','0'},
    {'1','1','0','1','0'},
    {'1','1','0','0','0'},
    {'0','0','0','0','0'}};
    s.numIslands(grid);
    system("pause");
    return 0;
}

BFS:
借用一个队列 queue,判断队列首部节点 (i, j) 是否未越界且为 1:
若是则置零(删除岛屿节点),并将此节点上下左右节点 (i+1,j),(i-1,j),(i,j+1),(i,j-1) 加入队列;
若不是则跳过此节点;
循环 pop 队列首节点,直到整个队列为空,此时已经遍历完此岛屿。

class Solution {
public:
    int numIslands(vector<vector<char>>& grid) {
        if (grid.empty() || grid[0].empty()) return 0;
        int m = grid.size(), n = grid[0].size();
        int res = 0;
        queue<pair<int, int>> q;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (grid[i][j] == '1') {
                    q.push({i,j});
                    grid[i][j] = '0'; // 标记为已访问 加入就标记
                    res++;//第一层更新
                    while (!q.empty()) {//BFS遍历
                        int x = q.front().first, y = q.front().second;
                        q.pop();
                        for (const auto& dir : dirs) {
                            int nx = x + dir.first, ny = y + dir.second;
                            if (nx >= 0 && nx < m && ny >= 0 && ny < n && grid[nx][ny] == '1') {
                                q.push({nx,ny});
                                grid[nx][ny] = '0'; // 标记为已访问
                            }
                        }

                    }
                }
            }
        }


        return res;
    }
private:
    vector<pair<int, int>> dirs{{-1, 0}, {1, 0}, {0, -1}, {0, 1}};

};

【994】腐烂的橘子

在给定的 m x n 网格 grid 中,每个单元格可以有以下三个值之一:

  • 0 代表空单元格;
  • 1 代表新鲜橘子;
  • 2 代表腐烂的橘子。

每分钟,腐烂的橘子 周围 4 个方向上相邻 的新鲜橘子都会腐烂。

返回 直到单元格中没有新鲜橘子为止所必须经过的最小分钟数。如果不可能,返回 -1

示例 1:

img

输入:grid = [[2,1,1],[1,1,0],[0,1,1]]
输出:4
class Solution {
public:
    int orangesRotting(vector<vector<int>>& grid) {
        if(grid.size() == 0 ||grid[0].size() ==0)return -1;
        int m = grid.size();int n = grid[0].size();
        int min = 0;//分钟数
        int fresh = 0;//新鲜橘子
        queue<pair<int,int>> q;//存储腐烂的橘子
        for(int i =0;i<m;i++){
            for(int j =0;j<n;j++){
                if(grid[i][j] == 2){
                    q.push({i,j});
                }else if(grid[i][j] == 1){//统计新鲜橘子
                    fresh++;
                }
            }
        }
       // if(q.empty() || fresh==0 )return -1;//没有腐烂的橘子 没有新鲜的橘子

        vector<pair<int,int>> dirs = {{1,0},{0,1},{0,-1},{-1,0}};
        while(!q.empty()){//每一层
            int qsize = q.size();//有n个烂橘子
            bool flag = false;
            for(int i =0;i<qsize;i++){//遍历这n个烂橘子
                int x = q.front().first;
                int y = q.front().second;
                q.pop();
                for(auto dir:dirs){
                    int nx = dir.first+x;
                    int ny = dir.second+y;
                    if(nx >=0 && nx<m && ny >=0 && ny<n && grid[nx][ny]==1){
                        q.push({nx,ny});
                        grid[nx][ny] = 2;
                        fresh--;//到最后要没有新鲜橘子才结束
                        flag = 1;//有新鲜橘子就标记
                    }
                }
            }
            //一层就要++
            if(flag)min++;//有新鲜橘子才++
        }
        return fresh? -1:min;
    }
};

总结:腐烂的橘子是以各个腐烂的橘子为头结点开始入队遍历的,而岛屿数量是以有无1直接入队遍历。