一元函数: 可导 ⟺ \iff ⟺ 可微 ⟹ \implies ⟹ 连续 ⟹ \implies ⟹ 极限存在.
多元函数: 偏导连续 ⟹ \implies ⟹ 可微 ⟹ \implies ⟹ 连续 ⟹ \implies ⟹ 极限存在; 可微 ⟹ \implies ⟹ 偏导存在.
lim x → 0 , y → 0 x y x 2 + y 2 = 0 \lim_{x\to 0,y\to 0}\frac{xy}{\sqrt{x^2+y^2}}=0 limx→0,y→0x2+y2xy=0.
f ( x , y ) f(x,y) f(x,y) 在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 处可微, 即 d f = ∂ f ∂ x d x + ∂ f ∂ y d y ⟺ lim x → 0 , y → 0 f ( x 0 + x , y 0 + y ) − f ( x , y ) − [ f x ′ ( x 0 , y 0 ) x + f y ′ ( x 0 , y 0 ) y ] x 2 + y 2 = 0 \mathrm{d}f=\frac{\partial f}{\partial x}\mathrm{d}x+\frac{\partial f}{\partial y}\mathrm{d}y \iff \lim_{x\to 0,y\to 0}\frac{f(x_0+x,y_0+y)-f(x,y)-[f_x'(x_0,y_0)x+f_y'(x_0,y_0)y]}{\sqrt{x^2+y^2}}=0 df=∂x∂fdx+∂y∂fdy⟺limx→0,y→0x2+y2f(x0+x,y0+y)−f(x,y)−[fx′(x0,y0)x+fy′(x0,y0)y]=0.
{ F [ x , y , u ( x , y ) , v ( x , y ) ] = 0 G [ x , y , u ( x , y ) , v ( x , y ) ] = 0 ⟹ { F u ′ u x ′ + F v ′ v x ′ = − F x ′ G u ′ u x ′ + G v ′ v x ′ = − G x ′ , { F u ′ u y ′ + F v ′ v y ′ = − F y ′ G u ′ u y ′ + G v ′ v y ′ = − G y ′ J = ∂ ( F , G ) ∂ ( u , v ) ≠ 0 , u x ′ = − 1 J ∂ ( F , G ) ∂ ( x , v ) , v x ′ = − 1 J ∂ ( F , G ) ∂ ( u , x ) , u y ′ = − 1 J ∂ ( F , G ) ∂ ( y , v ) , v y ′ = − 1 J ∂ ( F , G ) ∂ ( y , v ) . \begin{cases}F[x,y,u(x,y),v(x,y)]=0\\ G[x,y,u(x,y),v(x,y)]=0\end{cases}\implies \begin{cases}F_u'u_x'+F_v'v_x'=-F_x'\\ G_u'u_x'+G_v'v_x'=-G_x'\end{cases},\ \begin{cases}F_u'u_y'+F_v'v_y'=-F_y'\\ G_u'u_y'+G_v'v_y'=-G_y'\end{cases}\\ J=\frac{\partial(F,G)}{\partial(u,v)}\ne 0,\ u_x'=-\frac{1}{J}\frac{\partial(F,G)}{\partial(x,v)},\ v_x'=-\frac{1}{J}\frac{\partial(F,G)}{\partial(u,x)},\ u_y'=-\frac{1}{J}\frac{\partial(F,G)}{\partial(y,v)},\ v_y'=-\frac{1}{J}\frac{\partial(F,G)}{\partial(y,v)}. {F[x,y,u(x,y),v(x,y)]=0G[x,y,u(x,y),v(x,y)]=0⟹{Fu′ux′+Fv′vx′=−Fx′Gu′ux′+Gv′vx′=−Gx′, {Fu′uy′+Fv′vy′=−Fy′Gu′uy′+Gv′vy′=−Gy′J=∂(u,v)∂(F,G)=0, ux′=−J1∂(x,v)∂(F,G), vx′=−J1∂(u,x)∂(F,G), uy′=−J1∂(y,v)∂(F,G), vy′=−J1∂(y,v)∂(F,G).
z = f ( x , y ) z=f(x,y) z=f(x,y) 在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 处取极值 ⟹ \implies ⟹ 偏导存在时 f x ′ ( x 0 , y 0 ) = f y ′ ( x 0 , y 0 ) = 0 f_x'(x_0,y_0)=f_y'(x_0,y_0)=0 fx′(x0,y0)=fy′(x0,y0)=0, 或偏导不存在.
z = f ( x , y ) z=f(x,y) z=f(x,y) 在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 处有二阶偏导: f x ′ ( x 0 , y 0 ) = f y ′ ( x 0 , y 0 ) = 0 f_x'(x_0,y_0)=f_y'(x_0,y_0)=0 fx′(x0,y0)=fy′(x0,y0)=0; f x x ′ ′ ( x 0 , y 0 ) = A f_{xx}''(x_0,y_0)=A fxx′′(x0,y0)=A, f x y ′ ′ ( x 0 , y 0 ) = B f_{xy}''(x_0,y_0)=B fxy′′(x0,y0)=B, f y y ′ ′ ( x 0 , y 0 ) = C f_{yy}''(x_0,y_0)=C fyy′′(x0,y0)=C, Δ = A C − B 2 \Delta=AC-B^2 Δ=AC−B2.
f ( Δ x , Δ y ) = 1 2 ( Δ x , Δ y ) ( A B B C ) ( Δ x Δ y ) f(\Delta x,\Delta y)=\frac{1}{2}(\Delta x,\Delta y)\begin{pmatrix}A & B\\ B & C\end{pmatrix}\begin{pmatrix}\Delta x \\ \Delta y\end{pmatrix} f(Δx,Δy)=21(Δx,Δy)(ABBC)(ΔxΔy).
Δ < 0 \Delta <0 Δ<0 且 A < 0 ( C < 0 ) A<0(C<0) A<0(C<0) 时, 矩阵正定, 为极大值;
Δ < 0 \Delta <0 Δ<0 且 A > 0 ( C > 0 ) A>0(C>0) A>0(C>0) 时, 矩阵负定, 为极小值;
Δ > 0 \Delta>0 Δ>0 时, 矩阵正负不定, 不为极值;
Δ = 0 \Delta=0 Δ=0 时不确定.
光滑闭曲线上与定点距离最近/最远的点的连线与该点处切线垂直; 两光滑闭曲线最近/最远点的连线为公垂线.
y ≥ k x + b y\geq kx+b y≥kx+b 为直线上方; y ≤ k x + b y\leq kx+b y≤kx+b 为直线下方.
D D D 关于 ( a , b ) (a,b) (a,b) 对称时, ∬ D f ( x , y ) d σ = { 2 ∬ D 1 f ( x , y ) d σ , f ( x , y ) = f ( 2 a − x , 2 b − y ) 0 , f ( x , y ) = − f ( 2 a − x , 2 b − y ) \iint_D f(x,y)\mathrm{d}\sigma=\begin{cases}2\iint_{D_1}f(x,y)\mathrm{d}\sigma, & f(x,y)=f(2a-x,2b-y)\\ 0, & f(x,y)=-f(2a-x,2b-y)\end{cases} ∬Df(x,y)dσ={2∬D1f(x,y)dσ,0,f(x,y)=f(2a−x,2b−y)f(x,y)=−f(2a−x,2b−y).
D D D 关于 y = x y=x y=x 对称时, ∬ D f ( x , y ) d σ = ∬ D f ( y , x ) d σ = 1 2 ∬ D [ f ( x , y ) + f ( y , x ) ] d σ \iint_D f(x,y)\mathrm{d}\sigma=\iint_D f(y,x)\mathrm{d}\sigma=\frac{1}{2}\iint_D [f(x,y)+f(y,x)]\mathrm{d}\sigma ∬Df(x,y)dσ=∬Df(y,x)dσ=21∬D[f(x,y)+f(y,x)]dσ.
∬ D x y f ( x , y ) d x d y = ∬ D u v f [ x ( u , v ) , y ( u , v ) ] ∣ ∂ ( x , y ) ∂ ( u , v ) ∣ d u d v . \iint_{D_{xy}}f(x,y)\mathrm{d}x\mathrm{d}y=\iint_{D_{uv}}f[x(u,v),y(u,v)]\Big|\frac{\partial(x,y)}{\partial(u,v)}\Big|\mathrm{d}u\mathrm{d}v. ∬Dxyf(x,y)dxdy=∬Duvf[x(u,v),y(u,v)] ∂(u,v)∂(x,y) dudv.
∬ D x y f ( x , y ) d x d y = ∫ α β d θ ∫ r 1 ( θ ) r 2 ( θ ) f ( r cos θ , r sin θ ) r d r . \iint_{D_{xy}}f(x,y)\mathrm{d}x\mathrm{d}y=\int_\alpha^\beta\mathrm{d}\theta\int_{r_1(\theta)}^{r_2(\theta)} f(r\cos\theta,r\sin\theta)r\mathrm{d}r. ∬Dxyf(x,y)dxdy=∫αβdθ∫r1(θ)r2(θ)f(rcosθ,rsinθ)rdr.
( x 1 , y 1 , z 1 ) × ( x 2 , y 2 , z 2 ) = ( y 1 z 2 − y 2 z 1 , z 1 x 2 − z 2 x 1 , x 1 y 2 − x 2 y 1 ) . (x_1,y_1,z_1)\times(x_2,y_2,z_2)=(y_1z_2-y_2z_1,z_1x_2-z_2x_1,x_1y_2-x_2y_1). (x1,y1,z1)×(x2,y2,z2)=(y1z2−y2z1,z1x2−z2x1,x1y2−x2y1).
曲线 F ( x , y , z ) = 0 ∧ G ( x , y , z ) = 0 F(x,y,z)=0 \wedge G(x,y,z)=0 F(x,y,z)=0∧G(x,y,z)=0 切向量 τ = ( F x ′ , F y ′ , F z ′ ) × ( G x ′ , G y ′ , G z ′ ) \bm{\tau}=(F_x',F_y',F_z')\times(G_x',G_y',G_z') τ=(Fx′,Fy′,Fz′)×(Gx′,Gy′,Gz′);
曲面 z = z ( x , y ) z=z(x,y) z=z(x,y) 法向量 n = ( z x ′ , z y ′ , − 1 ) \bm{n}=(z_x',z_y',-1) n=(zx′,zy′,−1).
二次曲面: 椭圆柱面 x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 a2x2+b2y2=1; 双曲柱面 x 2 a 2 − y 2 b 2 = 1 \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 a2x2−b2y2=1; 抛物柱面 y = a x 2 ( a > 0 ) y=ax^2\ (a>0) y=ax2 (a>0); 椭球面 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1; 单叶双曲面 x 2 a 2 + y 2 b 2 − z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1 a2x2+b2y2−c2z2=1; 双叶双曲面 x 2 a 2 − y 2 b 2 − z 2 c 2 = 1 \frac{x^2}{a^2}-\frac{y^2}{b^2}-\frac{z^2}{c^2}=1 a2x2−b2y2−c2z2=1; 二次锥面 x 2 a 2 + y 2 b 2 = z 2 c 2 \frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2} a2x2+b2y2=c2z2; 椭圆抛物面 x 2 2 p + y 2 2 q = z ( p , q > 0 ) \frac{x^2}{2p}+\frac{y^2}{2q}=z\ (p,q>0) 2px2+2qy2=z (p,q>0); 双曲抛物面(马鞍面) − x 2 2 p + y 2 2 q = z ( p , q > 0 ) -\frac{x^2}{2p}+\frac{y^2}{2q}=z\ (p,q>0) −2px2+2qy2=z (p,q>0) 或 z = x y z=xy z=xy.
旋转面: 曲面垂直于旋转轴的截面上交点到旋转轴距离总相等; 曲线 Γ \Gamma Γ 绕直线 L L L 旋转, N N N 为直线上点, τ \bm{\tau} τ 为直线方向向量, M M M 为旋转面上点, 设 P P P 为曲线上点; 总有 ∣ M N ∣ = ∣ P N ∣ |MN|=|PN| ∣MN∣=∣PN∣ 和 P M → ⊥ τ \overrightarrow{PM}\perp\bm{\tau} PM⊥τ; 与 Γ \Gamma Γ 联立并消去 P P P.
柱面: 曲面上任意点处法向量总垂直于某定向量.
锥面: 曲面上点与一定点的连线(母线)总在曲面上; 曲线 Γ \Gamma Γ 为准线, E E E 为顶点, M M M 为锥面上点, 设 P P P 为曲线上点; 总有 M , E , P M,E,P M,E,P 三点共线; 与 Γ \Gamma Γ 联立并消去 P P P.
方向导数 ∂ u ( x , y , z ) ∂ l ∣ P 0 = ( x 0 , y 0 , z 0 ) = lim ρ → 0 + u ( x 0 + ρ cos α , y 0 + ρ cos β , z 0 + ρ cos γ ) − u ( x 0 , y 0 , z 0 ) ρ = ( u x ′ ( P 0 ) , u y ′ ( P 0 ) , u z ′ ( P 0 ) ) ⋅ ( cos α , cos β , cos γ ) \frac{\partial u(x,y,z)}{\partial l}\Big|_{P_0=(x_0,y_0,z_0)}=\lim_{\rho\to 0^+}\frac{u(x_0+\rho\cos\alpha,y_0+\rho\cos\beta,z_0+\rho\cos\gamma)-u(x_0,y_0,z_0)}{\rho}=(u_x'(P_0),u_y'(P_0),u_z'(P_0))\cdot(\cos\alpha,\cos\beta,\cos\gamma) ∂l∂u(x,y,z) P0=(x0,y0,z0)=limρ→0+ρu(x0+ρcosα,y0+ρcosβ,z0+ρcosγ)−u(x0,y0,z0)=(ux′(P0),uy′(P0),uz′(P0))⋅(cosα,cosβ,cosγ); 该点处方向导数最大值方向为梯度方向, 最大值为梯度模长.
u = u ( x , y , z ) ; F ( x , y , z ) = ( P ( x , y , z ) , Q ( x , y , z ) , R ( x , y , z ) ) ; ∇ = ( ∂ ∂ x , ∂ ∂ y , ∂ ∂ z ) ; g r a d u = ∇ u ; d i v F = ∇ ⋅ F ; r o t F = ∇ × F . u=u(x,y,z);\ \bm{F}(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z));\ \nabla=(\frac{\partial}{\partial x},\frac{\partial}{\partial y},\frac{\partial}{\partial z});\\ \mathbf{grad}u=\nabla u;\ {\rm div}\bm{F}=\nabla\cdot\bm{F};\ \mathbf{rot}\bm{F}=\nabla\times\bm{F}. u=u(x,y,z); F(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z)); ∇=(∂x∂,∂y∂,∂z∂);gradu=∇u; divF=∇⋅F; rotF=∇×F.
椭圆 x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 a2x2+b2y2=1 面积为 π a b \pi ab πab.
投影穿线法: 区域 Ω \Omega Ω 有上曲面 z = z 2 ( x , y ) z=z_2(x,y) z=z2(x,y) 和下曲面 z = z 1 ( x , y ) z=z_1(x,y) z=z1(x,y), 中间无侧面或侧面为柱面, 在 x o y xoy xoy 平面上投影为 D x y D_{xy} Dxy, 则 ∭ Ω f ( x , y , z ) d V = ∬ D x y d σ ∫ z 1 ( x , y ) z 2 ( x , y ) f ( x , y , z ) d z \iiint_\Omega f(x,y,z)\mathrm{d}V=\iint_{D_{xy}}\mathrm{d}\sigma\int_{z_1(x,y)}^{z_2(x,y)}f(x,y,z)\mathrm{d}z ∭Ωf(x,y,z)dV=∬Dxydσ∫z1(x,y)z2(x,y)f(x,y,z)dz.
定限截面法: 区域 Ω \Omega Ω 有横截面 D z D_z Dz, 高度范围为 [ z 1 , z 2 ] [z_1,z_2] [z1,z2], 则 ∭ Ω f ( x , y , z ) d V = ∫ z 1 z 2 f ( x , y , z ) d z ∬ D z f ( x , y , z ) d σ \iiint_\Omega f(x,y,z)\mathrm{d}V=\int_{z_1}^{z_2} f(x,y,z)\mathrm{d}z\iint_{D_z}f(x,y,z)\mathrm{d}\sigma ∭Ωf(x,y,z)dV=∫z1z2f(x,y,z)dz∬Dzf(x,y,z)dσ.
∭ Ω x y z f ( x , y , z ) d x d y d z = ∭ Ω u v w f [ x ( u , v , w ) , y ( u , v , w ) , z ( u , v , w ) ] ∣ ∂ ( x , y , z ) ∂ ( u , v , w ) ∣ d u d v d w . \iiint_{\Omega_{xyz}}f(x,y,z)\mathrm{d}x\mathrm{d}y\mathrm{d}z=\iiint_{\Omega_{uvw}}f[x(u,v,w),y(u,v,w),z(u,v,w)]\Big|\frac{\partial(x,y,z)}{\partial(u,v,w)}\Big|\mathrm{d}u\mathrm{d}v\mathrm{d}w. ∭Ωxyzf(x,y,z)dxdydz=∭Ωuvwf[x(u,v,w),y(u,v,w),z(u,v,w)] ∂(u,v,w)∂(x,y,z) dudvdw.
∭ Ω f ( x , y , z ) d x d y d z = ∭ Ω f ( r cos θ , r sin θ , z ) r d r d θ d z ; x = r cos θ , y = r sin θ . \iiint_\Omega f(x,y,z)\mathrm{d}x\mathrm{d}y\mathrm{d}z=\iiint_\Omega f(r\cos\theta,r\sin\theta,z)r\mathrm{d}r\mathrm{d}\theta\mathrm{d}z;\ x=r\cos\theta,\ y=r\sin\theta. ∭Ωf(x,y,z)dxdydz=∭Ωf(rcosθ,rsinθ,z)rdrdθdz; x=rcosθ, y=rsinθ.
∭ Ω f ( x , y , z ) d x d y d z = ∭ Ω f ( r sin φ cos θ , r sin φ sin θ , r cos φ ) r 2 sin φ d r d φ d θ ; x = r sin φ cos θ , y = r sin φ sin θ , z = r cos φ . \iiint_\Omega f(x,y,z)\mathrm{d}x\mathrm{d}y\mathrm{d}z=\iiint_\Omega f(r\sin\varphi\cos\theta,r\sin\varphi\sin\theta,r\cos\varphi)r^2\sin\varphi\mathrm{d}r\mathrm{d}\varphi\mathrm{d}\theta;\\ x=r\sin\varphi\cos\theta,\ y=r\sin\varphi\sin\theta,\ z=r\cos\varphi. ∭Ωf(x,y,z)dxdydz=∭Ωf(rsinφcosθ,rsinφsinθ,rcosφ)r2sinφdrdφdθ;x=rsinφcosθ, y=rsinφsinθ, z=rcosφ.
第一型曲线积分: d l = ( d x ) 2 + ( d y ) 2 \mathrm{d}l=\sqrt{(\mathrm{d}x)^2+(\mathrm{d}y)^2} dl=(dx)2+(dy)2.
第一型曲面积分: d S = ( d x ) 2 + ( d y ) 2 + ( d z ) 2 \mathrm{d}S=\sqrt{(\mathrm{d}x)^2+(\mathrm{d}y)^2+(\mathrm{d}z)^2} dS=(dx)2+(dy)2+(dz)2.
第二型曲线积分: 做功; d y = y ′ ( x ) d x \mathrm{d}y=y'(x)\mathrm{d}x dy=y′(x)dx.
格林公式: 补线法(路径有关); 包含奇点且路径无关时(即 ∂ Q ∂ x = ∂ P ∂ y \frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y} ∂x∂Q=∂y∂P)换路径.
第二型曲面积分: 通量; ∬ Σ R ( x , y , z ) d x d y = ± ∬ D x y R ( x , y , z ( x , y ) ) d x d z \iint_\Sigma R(x,y,z)\mathrm{d}x\mathrm{d}y=\pm\iint_{D_{xy}}R(x,y,z(x,y))\mathrm{d}x\mathrm{d}z ∬ΣR(x,y,z)dxdy=±∬DxyR(x,y,z(x,y))dxdz, D x y D_{xy} Dxy 为 Σ \Sigma Σ 在 x o y xoy xoy 平面上投影, 外法向量 n Σ \bm{n}_\Sigma nΣ 与 z z z 轴正半轴夹角为锐角时(前侧/右侧/上侧)取正.
高斯公式: 补面法(散度不为 0 0 0); 含奇点且散度为 0 0 0 时换面.
∬ Σ ( ∇ × F ) ⋅ d S = ∮ ∂ Σ F ⋅ d L ; ∭ Ω ( ∇ ⋅ F ) d V = ∯ ∂ Ω F ⋅ d S ; ∫ Ω d ω = ∫ ∂ Ω ω . d L = ( d x , d y , d z ) ; d S = ( d x d y , d x d z , d y d z ) = ( cos α , cos β , cos γ ) d S . \iint_\Sigma(\nabla\times\bm{F})\cdot\mathrm{d}\bm{S}=\oint_{\partial\Sigma}\bm{F}\cdot\mathrm{d}\bm{L};\ \iiint_\Omega(\nabla\cdot\bm{F})\mathrm{d}V=\oiint_{\partial\Omega}\bm{F}\cdot\mathrm{d}\bm{S};\ \int_\Omega\mathrm{d}\omega=\int_{\partial\Omega}\omega.\\ \mathrm{d}\bm{L}=(\mathrm{d}x,\mathrm{d}y,\mathrm{d}z);\ \mathrm{d}\bm{S}=(\mathrm{d}x\mathrm{d}y,\mathrm{d}x\mathrm{d}z,\mathrm{d}y\mathrm{d}z)=(\cos\alpha,\cos\beta,\cos\gamma)\mathrm{d}S. ∬Σ(∇×F)⋅dS=∮∂ΣF⋅dL; ∭Ω(∇⋅F)dV=∬∂ΩF⋅dS; ∫Ωdω=∫∂Ωω.dL=(dx,dy,dz); dS=(dxdy,dxdz,dydz)=(cosα,cosβ,cosγ)dS.
微元法
平面曲线弧长: d l = ( d x ) 2 + ( d y ) 2 = [ r ( θ ) ] 2 + [ r ′ ( θ ) ] 2 d θ \mathrm{d}l=\sqrt{(\mathrm{d}x)^2+(\mathrm{d}y)^2}=\sqrt{[r(\theta)]^2+[r'(\theta)]^2}\mathrm{d}\theta dl=(dx)2+(dy)2=[r(θ)]2+[r′(θ)]2dθ.
极坐标平面面积: d S = 1 2 r 2 d θ \mathrm{d}S=\frac{1}{2}r^2\mathrm{d}\theta dS=21r2dθ.
旋转体体积: d V = π r 2 d h = 2 π h r 2 d r \mathrm{d}V=\pi r^2\mathrm{d}h=2\pi hr^2\mathrm{d}r dV=πr2dh=2πhr2dr.
旋转体侧面积: d S = 2 π r d l = 2 π l d r \mathrm{d}S=2\pi r\mathrm{d}l=2\pi l\mathrm{d}r dS=2πrdl=2πldr.
质量: d m = ρ d l \mathrm{d}m=\rho\mathrm{d}l dm=ρdl (线) = ρ d S =\rho\mathrm{d}S =ρdS (面) = ρ d V =\rho\mathrm{d}V =ρdV (体).
转动惯量: d I = r 2 d m \mathrm{d}I=r^2\mathrm{d}m dI=r2dm.
液体压力: d F = ρ g h d S \mathrm{d}F=\rho gh\mathrm{d}S dF=ρghdS.
做功: d W = L ⋅ d F \mathrm{d}W=\bm{L}\cdot\mathrm{d}\bm{F} dW=L⋅dF.
单质点引力分量: d F θ = G M d m r 2 cos θ \mathrm{d}F_\theta=G\frac{M\mathrm{d}m}{r^2}\cos\theta dFθ=Gr2Mdmcosθ.
质心: ( x ˉ , y ˉ , z ˉ ) ∫ d m = ∫ ( x , y , z ) d m (\bar{x},\bar{y},\bar{z})\int\mathrm{d}m=\int(x,y,z)\mathrm{d}m (xˉ,yˉ,zˉ)∫dm=∫(x,y,z)dm.
形心: ∬ D ( x , y ) d σ = ( x ˉ , y ˉ ) S D \iint_{D}(x,y)\mathrm{d}\sigma=(\bar{x},\bar{y})S_D ∬D(x,y)dσ=(xˉ,yˉ)SD; ∭ Ω ( x , y , z ) d V = ( x ˉ , y ˉ , z ˉ ) V Ω \iiint_{\Omega}(x,y,z)\mathrm{d}V=(\bar{x},\bar{y},\bar{z})V_\Omega ∭Ω(x,y,z)dV=(xˉ,yˉ,zˉ)VΩ.