《A Practical Guide To Quantitative Finance Interviews》,被称为量化绿皮书,是经典的量化求职刷题书籍之一,包含以下七章:
Chapter 1 General Principles 通用技巧
Chapter 2 Brain Teasers 脑筋急转弯
Chapter 3 Calculus and Linear Algebra 微积分与线性代数
Chapter 4 Probability Theory 概率论
Chapter 5 Stochastic Process and Stochastic Calculus 随机过程与随机微积分
Chapter 6 Finance 金融
Chapter 7 Algorithms and Numerical Methods 算法与数值方法
目录
文章目录
3.1 Limits and Derivatives 极限与导数
3.1.1 Basics of derivatives 导数基础
**导数:**对 y = f ( x ) y=f(x) y=f(x),导数 f ′ ( x ) = d y d x = lim Δ x → 0 Δ y Δ x = lim Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x f'(x)=\frac{dy}{dx}=\underset{\Delta x \rightarrow 0}{\lim}\frac{\Delta y}{\Delta x}=\underset{\Delta x \rightarrow 0}{\lim}\frac{f(x+\Delta x)-f(x)}{\Delta x} f′(x)=dxdy=Δx→0limΔxΔy=Δx→0limΔxf(x+Δx)−f(x)
乘法法则: d ( u v ) d x = u d v d x + v d u d x \frac{d(uv)}{dx}=u\frac{dv}{dx}+v\frac{du}{dx} dxd(uv)=udxdv+vdxdu, ( u v ) ′ = u ′ v + u v ′ (uv)'=u'v+uv' (uv)′=u′v+uv′
除法法则: d d x ( u v ) = ( v d u d x − u d v d x ) / v 2 \frac{d}{dx}(\frac{u}{v})=(v\frac{du}{dx}-u\frac{dv}{dx})/v^2 dxd(vu)=(vdxdu−udxdv)/v2, ( u v ) ′ = u ′ v − u v ′ v 2 (\frac{u}{v})'=\frac{u'v-uv'}{v^2} (vu)′=v2u′v−uv′
**链式法则:**对 y = f ( u ( x ) ) y=f(u(x)) y=f(u(x))和 u = u ( x ) u=u(x) u=u(x), d y d x = d y d u d u d x \frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx} dxdy=dudydxdu
广义幂法则: d y n d x = n y n − 1 d y d x , ∀ n ≠ 0 \frac{dy^n}{dx}=ny^{n-1}\frac{dy}{dx},\forall n \not = 0 dxdyn=nyn−1dxdy,∀n=0
常见等式:
- a x = e x ln a a^x=e^{x\ln a} ax=exlna、 ln ( a b ) = ln a + ln b \ln(ab)=\ln a+\ln b ln(ab)=lna+lnb、 e x = lim n → ∞ ( 1 + x n ) n e^x=\underset{n \rightarrow \infty}{\lim}(1+\frac{x}{n})^n ex=n→∞lim(1+nx)n
- lim x → 0 sin x x = 1 \underset{x \rightarrow 0}{\lim}\frac{\sin x}{x}=1 x→0limxsinx=1、 lim x → 0 ( 1 + x ) k = 1 + k x , 对任意 k \underset{x \rightarrow 0}{\lim}(1+x)^k=1+kx,对任意k x→0lim(1+x)k=1+kx,对任意k
- lim x → ∞ ( ln x / x r ) = 0 , 对任意 r > 0 \underset{x \rightarrow \infty}{\lim}(\ln x/x^r)=0,对任意r>0 x→∞lim(lnx/xr)=0,对任意r>0、 lim x → ∞ ( x r e − x ) = 0 , 对任意 r > 0 \underset{x \rightarrow \infty}{\lim}(x^re^{-x})=0,对任意r>0 x→∞lim(xre−x)=0,对任意r>0
- d d x e u = e u d u d x \frac{d}{dx}e^u=e^u\frac{du}{dx} dxdeu=eudxdu、 d d x a u = ( a u ln a ) d u d x \frac{d}{dx}a^u=(a^u\ln a)\frac{du}{dx} dxdau=(aulna)dxdu、 d d x ln u = 1 u d u d x = u ′ u \frac{d}{dx}\ln u=\frac{1}{u}\frac{du}{dx}=\frac{u'}{u} dxdlnu=u1dxdu=uu′
- d d x sin x = cos x \frac{d}{dx}\sin x=\cos x dxdsinx=cosx、 d d x cos x = − sin x \frac{d}{dx}\cos x=-\sin x dxdcosx=−sinx、 d d x tan x = sec 2 x \frac{d}{dx}\tan x=\sec^2 x dxdtanx=sec2x
问:求 y = ln x ln x y=\ln x^{\ln x} y=lnxlnx的导数。
答:
令 u = ln y = ln ( ln x ln x ) = ln x × ln ( ln x ) u=\ln y=\ln(\ln x^{\ln x})=\ln x\times\ln(\ln x) u=lny=ln(lnxlnx)=lnx×ln(lnx),
则有 d u d x = d ( ln x ) d x × ln ( ln x ) + ln x × d ( ln ( ln x ) ) d x = ln ( ln x ) x + ln x x ln x \frac{du}{dx}=\frac{d(\ln x)}{dx}\times\ln(\ln x)+\ln x\times\frac{d(\ln(\ln x))}{dx}=\frac{\ln(\ln x)}{x}+\frac{\ln x}{x\ln x} dxdu=dxd(lnx)×ln(lnx)+lnx×dxd(ln(lnx))=xln(lnx)+xlnxlnx
∵ d u d x = d ( ln y ) d x = 1 y d y d x \because \frac{du}{dx}=\frac{d(\ln y)}{dx}=\frac{1}{y}\frac{dy}{dx} ∵dxdu=dxd(lny)=y1dxdy
∴ d y d x = y d u d x = ln x ln x x ( ln ( ln x ) + 1 ) \therefore \frac{dy}{dx}=y\frac{du}{dx}=\frac{\ln x^{\ln x}}{x}(\ln(\ln x)+1) ∴dxdy=ydxdu=xlnxlnx(ln(lnx)+1)
3.1.2 Maximum and minimum 最大值和最小值
**局部最大值和最小值:**假设 f ( x ) f(x) f(x)在 c c c处可微,并且定义在包含 c c c的开区间上。如果 f ( c ) f(c) f(c)是 f ( x ) f(x) f(x)的局部最大值或最小值,则 f ′ ( c ) = 0 f'(c)=0 f′(c)=0。
**二阶导检验:**假设 f ( x ) f(x) f(x)的二阶导 f ′ ′ ( x ) f''(x) f′′(x)在 c c c附近连续。如果 f ′ ( c ) = 0 f'(c)=0 f′(c)=0且 f ′ ′ ( c ) > 0 f''(c)>0 f′′(c)>0,则 f ( x ) f(x) f(x)在 c c c处有局部最小值;如果 f ′ ( c ) = 0 f'(c)=0 f′(c)=0且 f ′ ′ ( c ) < 0 f''(c)<0 f′′(c)<0,则 f ( x ) f(x) f(x)在 c c c处有局部最大值。
问:在不计算数值结果的情况下, e π e^{\pi} eπ和 π e \pi^e πe哪个更大?
答:
两边取 ln \ln ln,对比 e π e^{\pi} eπ和 π e \pi^e πe ⇔ \Leftrightarrow ⇔ 对比 π ln e \pi\ln e πlne和 e ln π e\ln \pi elnπ ⇔ \Leftrightarrow ⇔ 对比 ln e e \frac{\ln e}{e} elne和 ln π π \frac{\ln \pi}{\pi} πlnπ
考虑** f ( x ) = ln x x f(x)=\frac{\ln x}{x} f(x)=xlnx的单调性**, f ′ ( x ) = 1 − ln x x 2 f'(x)=\frac{1-\ln x}{x^2} f′(x)=x21−lnx,在 x > e x>e x>e时, f ′ ( x ) < 0 f'(x)<0 f′(x)<0
∵ e < π \because e<\pi ∵e<π
∴ ln e e > ln π π \therefore \frac{\ln e}{e}>\frac{\ln \pi}{\pi} ∴elne>πlnπ ⇔ \Leftrightarrow ⇔ e π > π e e^{\pi}>\pi^e eπ>πe
也可以使用3.4.1 泰勒级数, e x = ∑ n = 0 ∞ 1 n ! = 1 + x 1 ! + x 2 2 ! + x 3 3 ! + … e^x={\sum}^{\infty}_{n=0}\frac{1}{n!}=1+\frac{x}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+… ex=∑n=0∞n!1=1+1!x+2!x2+3!x3+…
即 e x > 1 + x e^x>1+x ex>1+x,令 x = π / e − 1 x=\pi/e-1 x=π/e−1,则 e π / e / e > π / e e^{\pi/e}/e>\pi/e eπ/e/e>π/e ⇔ \Leftrightarrow ⇔ e π > π e e^{\pi}>\pi^e eπ>πe
3.1.3 L’Hospital’s rule 洛必达法则
洛必达法则:
假设 f ( x ) f(x) f(x)和 g ( x ) g(x) g(x)在 x → a x\rightarrow a x→a处可微,且 lim x → a g ′ ( a ) ≠ 0 \underset{x \rightarrow a}{\lim}g'(a)\not=0 x→alimg′(a)=0
进一步假设 lim x → a f ( a ) = 0 \underset{x \rightarrow a}{\lim}f(a)=0 x→alimf(a)=0, lim x → a g ( a ) = 0 \underset{x \rightarrow a}{\lim}g(a)=0 x→alimg(a)=0或 lim x → a f ( a ) → ± ∞ \underset{x \rightarrow a}{\lim}f(a)\rightarrow \pm \infty x→alimf(a)→±∞, lim x → a g ( a ) → ± ∞ \underset{x \rightarrow a}{\lim}g(a)\rightarrow \pm \infty x→alimg(a)→±∞
则 lim x → a f ( x ) g ( x ) = lim x → a f ′ ( x ) g ′ ( x ) \underset{x \rightarrow a}{\lim}\frac{f(x)}{g(x)}=\underset{x \rightarrow a}{\lim}\frac{f'(x)}{g'(x)} x→alimg(x)f(x)=x→alimg′(x)f′(x)
问:求 lim x → ∞ e x x 2 \underset{x \rightarrow \infty}{\lim}\frac{e^x}{x^2} x→∞limx2ex和 lim x → 0 + x 2 ln x \underset{x \rightarrow 0^+}{\lim}x^2\ln x x→0+limx2lnx?
答:
lim x → ∞ e x x 2 = lim x → ∞ e x 2 x = lim x → ∞ e x 2 = ∞ \underset{x \rightarrow \infty}{\lim}\frac{e^x}{x^2}=\underset{x \rightarrow \infty}{\lim}\frac{e^x}{2x}=\underset{x \rightarrow \infty}{\lim}\frac{e^x}{2}=\infty x→∞limx2ex=x→∞lim2xex=x→∞lim2ex=∞
lim x → 0 + x 2 ln x = lim x → 0 + ln x x − 2 = lim x → 0 + 1 / x − 2 x − 3 = lim x → 0 + x 2 − 2 = 0 \underset{x \rightarrow 0^+}{\lim}x^2\ln x=\underset{x \rightarrow 0^+}{\lim}\frac{\ln x}{x^{-2}}=\underset{x \rightarrow 0^+}{\lim}\frac{1/x}{-2x^{-3}}=\underset{x \rightarrow 0^+}{\lim}\frac{x^2}{-2}=0 x→0+limx2lnx=x→0+limx−2lnx=x→0+lim−2x−31/x=x→0+lim−2x2=0
3.2 Integration 积分
3.2.1 Basics of integration 积分基础
**不定积分:**如果能找到一个函数 F ( x ) F(x) F(x),其导数是 f ( x ) f(x) f(x),则 F ( x ) F(x) F(x)为 f ( x ) f(x) f(x)的不定积分(原函数)。 ∫ a b f ( x ) = ∫ a b F ′ ( x ) d x = [ F ( x ) ] a b = F ( b ) − F ( a ) \int_a^bf(x)=\int_a^bF'(x)dx=[F(x)]_a^b=F(b)-F(a) ∫abf(x)=∫abF′(x)dx=[F(x)]ab=F(b)−F(a)
反向广义幂法则: ∫ u k d u = u k + 1 k + 1 + c \int u^kdu=\frac{u^{k+1}}{k+1}+c ∫ukdu=k+1uk+1+c, k ≠ 1 k\not=1 k=1
换元积分法: ∫ f ( g ( x ) ) ⋅ g ′ ( x ) d x = ∫ f ( u ) d u \int f(g(x))·g'(x)dx=\int f(u)du ∫f(g(x))⋅g′(x)dx=∫f(u)du,其中 u = g ( X ) , d u = g ′ ( x ) d x u=g(X),du=g'(x)dx u=g(X),du=g′(x)dx
- 定积分中的换元(上下限相应改变): ∫ a b f ( g ( x ) ) ⋅ g ′ ( x ) d x = ∫ g ( a ) g ( b ) f ( u ) d u \int_a^b f(g(x))·g'(x)dx=\int_{g(a)}^{g(b)} f(u)du ∫abf(g(x))⋅g′(x)dx=∫g(a)g(b)f(u)du
分部积分法: ∫ u d v = u v − ∫ v d u \int udv=uv-\int vdu ∫udv=uv−∫vdu
问:求 ∫ ln x d x \int \ln xdx ∫lnxdx?
**答:**分部积分法
∫ ln x d x = x ln x − ∫ 1 d x = x ln x − x + c \int \ln xdx=x\ln x-\int 1dx=x\ln x-x+c ∫lnxdx=xlnx−∫1dx=xlnx−x+c
问:求 ∫ 0 π / 6 sec x \int_0^{\pi/6}\sec x ∫0π/6secx?
答:
d sec x d x = d ( 1 / cos x ) d x = sin x cos 2 x = sec x tan x \frac{d\sec x}{dx}=\frac{d(1/\cos x)}{dx}=\frac{\sin x}{\cos^2x}=\sec x\tan x dxdsecx=dxd(1/cosx)=cos2xsinx=secxtanx
d tan x d x = d ( sin x / cos x ) d x = cos 2 x + sin 2 x cos 2 x = sec 2 x \frac{d\tan x}{dx}=\frac{d(\sin x/\cos x)}{dx}=\frac{\cos^2 x+\sin^2 x}{\cos^2x}=\sec^2 x dxdtanx=dxd(sinx/cosx)=cos2xcos2x+sin2x=sec2x
∴ d ( sec x + tan x ) d x = sec x ( sec x + tan x ) \therefore \frac{d(\sec x+\tan x)}{dx}=\sec x(\sec x+\tan x) ∴dxd(secx+tanx)=secx(secx+tanx)
将 ( sec x + tan x ) (\sec x+\tan x) (secx+tanx)视为一个整体,则有:
d ln ∣ sec x + tan x ∣ d x = sec x ( sec x + tan x ) ( sec x + tan x ) = sec x \frac{d\ln|\sec x+\tan x|}{dx}=\frac{\sec x(\sec x+\tan x)}{(\sec x+\tan x)}=\sec x dxdln∣secx+tanx∣=(secx+tanx)secx(secx+tanx)=secx
⇒ ∫ sec x = ln ∣ sec x + tan x ∣ + c \Rightarrow \int\sec x=\ln|\sec x+\tan x|+c ⇒∫secx=ln∣secx+tanx∣+c
∫ 0 π / 6 sec x = ln ∣ sec ( π / 6 ) + tan ( π / 6 ) ∣ − ln ∣ sec ( 0 ) + tan ( 0 ) ∣ = ln ( 3 ) \int_0^{\pi/6}\sec x=\ln|\sec(\pi/6)+\tan(\pi/6)|-\ln|\sec(0)+\tan(0)|=\ln(\sqrt3) ∫0π/6secx=ln∣sec(π/6)+tan(π/6)∣−ln∣sec(0)+tan(0)∣=ln(3)
3.2.2 Applications of integration 积分应用
问:两个半径为1的圆柱体成直角相交,中心也相交,相交的部分体积是多少?
**答:**计算三维体积 V = ∫ z 1 z 2 A ( z ) d z V=\int_{z_1}^{z_2}A(z)dz V=∫z1z2A(z)dz,其中 A ( z ) A(z) A(z)是垂直于 z z z轴的平面在坐标 z z z处切割的实体的横截面积。
用水平面切割,横截面为边长为 2 ∗ r 2 − z 2 2*\sqrt{r^2-z^2} 2∗r2−z2的正方形
体积为 2 ∗ ∫ 0 r 4 ∗ ( r 2 − z 2 ) d z = 8 ∗ [ r 2 z − z 3 / 3 ] 0 r = 16 / 3 r 3 = 16 / 3 2*\int_{0}^{r}4*(r^2-z^2)dz=8*[r^2z-z^3/3]_0^r=16/3r^3=16/3 2∗∫0r4∗(r2−z2)dz=8∗[r2z−z3/3]0r=16/3r3=16/3
考虑一个半径为 r / 2 r/2 r/2的球,处在相交的部分中间,每个部分的横截面与相交部分的横截面关系为相切的圆和正方形,即 A c i r c l e = π 4 A s q u a r e A_{circle}=\frac{\pi}{4}A_{square} Acircle=4πAsquare,高相同,所以 V i n t e r s e c t i o n = 4 π V s p h e r e = 4 π 4 3 π r 3 = 16 / 3 V_{intersection}=\frac{4}{\pi}V_{sphere}=\frac{4}{\pi}\frac{4}{3}\pi r^3=16/3 Vintersection=π4Vsphere=π434πr3=16/3
问:在中午之前的某个时候,雪开始以恒定的速度下起来。中午,剑桥市派出了扫雪机清理麻省理工到哈佛大学之间的马萨诸塞大道。这台扫雪机以每分钟固定的量铲雪。下午1点,它移动了2英里,下午2点,移动了3英里。什么时候开始下雪的?
答:
设中午为 t = 0 t=0 t=0,下午1点为 t = 1 t=1 t=1,下午2点为 t = 2 t=2 t=2, T T T小时之前开始下雪;
设雪的横截面积(雪的深度*路的宽度)为 A ( t ) A(t) A(t),雪的横截面积增加率为常数 c 2 c_2 c2(雪以恒定的速度下),则某时刻雪的横截面积 A ( t ) = c 2 ( t + T ) A(t)=c_2(t+T) A(t)=c2(t+T);
设扫雪机每小时能扫雪的体积为常数 c 1 c_1 c1,则扫雪机移动速度为 v = c 1 A ( t ) = c 1 c 2 ( t + T ) = c t + T v=\frac{c_1}{A(t)}=\frac{c_1}{c_2(t+T)}=\frac{c}{t+T} v=A(t)c1=c2(t+T)c1=t+Tc,其中 c = c 1 c 2 c=\frac{c_1}{c_2} c=c2c1;
下午1点,移动了2英里: ∫ 0 1 c T + t d t = c ln ( 1 + T ) − c ln T = c ln ( 1 + T T ) = 2 \int_0^1\frac{c}{T+t}dt=c\ln(1+T)-c\ln T=c\ln(\frac{1+T}{T})=2 ∫01T+tcdt=cln(1+T)−clnT=cln(T1+T)=2
下午2点,移动了3英里: ∫ 0 2 c T + t d t = c ln ( 2 + T ) − c ln T = c ln ( 2 + T T ) = 3 \int_0^2\frac{c}{T+t}dt=c\ln(2+T)-c\ln T=c\ln(\frac{2+T}{T})=3 ∫02T+tcdt=cln(2+T)−clnT=cln(T2+T)=3
可得 ( 1 + T T ) 3 = ( 2 + T T ) 2 (\frac{1+T}{T})^3=(\frac{2+T}{T})^2 (T1+T)3=(T2+T)2 ⇒ \Rightarrow ⇒ T 2 − T + 1 = 0 T^2-T+1=0 T2−T+1=0 ⇒ \Rightarrow ⇒ T = ( 5 − 1 ) / 2 T=(\sqrt5-1)/2 T=(5−1)/2
3.2.3 Expected value using integration 积分与期望
问:随机变量 X X X服从标准正态分布, X ∼ N ( 0 , 1 ) X\thicksim N(0,1) X∼N(0,1),求 E [ X ∣ X > 0 ] E[X|X>0] E[X∣X>0]?
答:
概率密度函数为 f ( x ) = 1 2 π e − 1 / 2 x 2 f(x)=\frac{1}{\sqrt{2\pi}}e^{-1/2x^2} f(x)=2π1e−1/2x2
所以, E [ X ∣ X > 0 ] = ∫ 0 ∞ x f ( x ) d x = ∫ 0 ∞ x 1 2 π e − 1 / 2 x 2 d x E[X|X>0]=\int_0^{\infty}xf(x)dx=\int_0^{\infty}x\frac{1}{\sqrt{2\pi}}e^{-1/2x^2}dx E[X∣X>0]=∫0∞xf(x)dx=∫0∞x2π1e−1/2x2dx
∵ d ( − 1 / 2 x 2 ) = − x , ∫ e u d u = e u + c \because d(-1/2x^2)=-x,\int e^udu=e^u+c ∵d(−1/2x2)=−x,∫eudu=eu+c
∴ ∫ 0 ∞ x 1 2 π e − 1 / 2 x 2 d x = ∫ 0 − ∞ − 1 2 π e u d u = − 1 2 π [ e u ] 0 − ∞ = 1 2 π \therefore \int_0^{\infty}x\frac{1}{\sqrt{2\pi}}e^{-1/2x^2}dx=\int_0^{-\infty}-\frac{1}{\sqrt{2\pi}}e^{u}du=-\frac{1}{\sqrt{2\pi}}[e^u]_0^{-\infty}=\frac{1}{\sqrt{2\pi}} ∴∫0∞x2π1e−1/2x2dx=∫0−∞−2π1eudu=−2π1[eu]0−∞=2π1
E [ X ∣ X > 0 ] = 1 2 π E[X|X>0]=\frac{1}{\sqrt{2\pi}} E[X∣X>0]=2π1
3.3 Partial Derivatives and Multiple Integrals 偏导数和多重积分
**偏导数:**对 w = f ( x , y ) w=f(x,y) w=f(x,y),对 x x x的偏导数 f x = ∂ f ∂ x ( x 0 , y 0 ) = lim Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x f_x=\frac{\partial f}{\partial x}(x_0,y_0)=\underset{\Delta x \rightarrow 0}{\lim}\frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x} fx=∂x∂f(x0,y0)=Δx→0limΔxf(x0+Δx,y0)−f(x0,y0)
二阶偏导数: ∂ 2 f ∂ x 2 = ∂ ∂ x ( ∂ f ∂ x ) \frac{\partial^2 f}{\partial x^2}=\frac{\partial} {\partial x}(\frac{\partial f}{\partial x}) ∂x2∂2f=∂x∂(∂x∂f), ∂ 2 f ∂ x ∂ y = ∂ ∂ x ( ∂ f ∂ y ) = ∂ ∂ y ( ∂ f ∂ x ) \frac{\partial^2 f}{\partial x\partial y}=\frac{\partial}{\partial x}(\frac{\partial f}{\partial y})=\frac{\partial}{\partial y}(\frac{\partial f}{\partial x}) ∂x∂y∂2f=∂x∂(∂y∂f)=∂y∂(∂x∂f)
**一般链式法则:**对 w = f ( x 1 , x 2 , … , x m ) w=f(x_1,x_2,…,x_m) w=f(x1,x2,…,xm),其中每个 x 1 , x 2 , … , x m x_1,x_2,…,x_m x1,x2,…,xm都是 t 1 , t 2 , … , t n t_1,t_2,…,t_n t1,t2,…,tn的函数,且都有连续一阶偏导数,则 ∂ w ∂ t i = ∂ w ∂ x 1 ∂ x 1 ∂ t i + ∂ w ∂ x 2 ∂ x 2 ∂ t i + … + ∂ w ∂ x m ∂ x m ∂ t i \frac{\partial w}{\partial t_i}=\frac{\partial w}{\partial x_1}\frac{\partial x_1}{\partial t_i}+\frac{\partial w}{\partial x_2}\frac{\partial x_2}{\partial t_i}+…+\frac{\partial w}{\partial x_m}\frac{\partial x_m}{\partial t_i} ∂ti∂w=∂x1∂w∂ti∂x1+∂x2∂w∂ti∂x2+…+∂xm∂w∂ti∂xm
**将笛卡尔积分转化为极坐标积分:**二维平面上的变量可以映射到极坐标 x = r cos θ , y = r sin θ x=r\cos\theta,y=r\sin\theta x=rcosθ,y=rsinθ中。积分被转换成在连续的极区间 R R R中的积分: ∬ R f ( x , y ) d x d y = ∬ R f ( r cos θ , r sin θ ) r d r d θ \iint_Rf(x,y)dxdy=\iint_Rf(r\cos \theta,r\sin \theta)rdrd\theta ∬Rf(x,y)dxdy=∬Rf(rcosθ,rsinθ)rdrdθ
问:求 ∫ 0 ∞ e − x 2 / 2 d x \int_0^{\infty} e^{-x^2/2}dx ∫0∞e−x2/2dx?
**答:**转化为极坐标积分
$$
\begin{aligned}
\int_{-\infty}^{\infty} e{-x2/2}dx\int_{-\infty}^{\infty} e{-y2/2}dy&=\int_{-\infty}{\infty}\int_{-\infty}{\infty}e{-(x2+y2)/2}dxdy=\int_{0}{\infty}\int_{0}{2\pi}e{-(r^2\cos 2\theta+r2\sin^2\theta)/2}rdrd\theta \
&=\int_{0}{\infty}\int_{0}{2\pi}e{-r2/2}rdrd\theta=\int_{0}{\infty}e{-r2/2}d(-r2/2)\int_{0}^{2\pi}d\theta \
&=[e{-r2/2}]_{0}{\infty}[\theta]_{0}{2\pi}=2\pi
\end{aligned}
$$
∵ ∫ − ∞ ∞ e − x 2 / 2 d x = ∫ − ∞ ∞ e − y 2 / 2 d y \because \int_{-\infty}^{\infty} e^{-x^2/2}dx=\int_{-\infty}^{\infty} e^{-y^2/2}dy ∵∫−∞∞e−x2/2dx=∫−∞∞e−y2/2dy
∴ ∫ 0 ∞ e − x 2 / 2 d x = 2 π 2 = π 2 \therefore \int_0^{\infty} e^{-x^2/2}dx=\frac{\sqrt{2\pi}}{2}=\sqrt{\frac{\pi}{2}} ∴∫0∞e−x2/2dx=22π=2π
标准正态分布的概率密度函数为 f ( x ) = 1 2 π e − 1 / 2 x 2 f(x)=\frac{1}{\sqrt{2\pi}}e^{-1/2x^2} f(x)=2π1e−1/2x2,由定义可得: ∫ − ∞ ∞ f ( x ) d x = ∫ − ∞ ∞ 1 2 π e − 1 / 2 x 2 d x = 2 ∫ 0 ∞ 1 2 π e − 1 / 2 x 2 d x = 1 \int_{-\infty}^{\infty}f(x)dx=\int_{-\infty}^{\infty}\frac{1}{\sqrt{2\pi}}e^{-1/2x^2}dx=2\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}e^{-1/2x^2}dx=1 ∫−∞∞f(x)dx=∫−∞∞2π1e−1/2x2dx=2∫0∞2π1e−1/2x2dx=1
∴ ∫ 0 ∞ e − x 2 / 2 d x = π 2 \therefore \int_0^{\infty} e^{-x^2/2}dx=\sqrt{\frac{\pi}{2}} ∴∫0∞e−x2/2dx=2π
3.4 Important Calculus Methods 重要的微积分方法
3.4.1 Taylor’s series 泰勒级数
**一维泰勒级数:**将函数 f ( x ) f(x) f(x)展开为在 x = x 0 x=x_0 x=x0处的导数构成的多项之和
- f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + … + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + … f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+…+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+… f(x)=f(x0)+f′(x0)(x−x0)+2!f′′(x0)(x−x0)2+…+n!f(n)(x0)(x−x0)n+…
麦克劳林公式:
- 如果 x 0 = 0 , f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + … + f ( n ) ( 0 ) n ! x n + … x_0=0,f(x)=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+…+\frac{f^{(n)}(0)}{n!}x^n+… x0=0,f(x)=f(0)+f′(0)x+2!f′′(0)x2+…+n!f(n)(0)xn+…
泰勒级数经常被用来表示幂级数形式的函数,三个常见的超越函数(Transcendental Functions)在 x 0 = 0 x_0=0 x0=0处的泰勒级数为:
- e x = ∑ n = 0 ∞ 1 n ! = 1 + x 1 ! + x 2 2 ! + x 3 3 ! + … e^x=\sum_{n=0}^{\infty}\frac{1}{n!}=1+\frac{x}{1!}+\frac{x^2}{2!} +\frac{x^3}{3!}+… ex=∑n=0∞n!1=1+1!x+2!x2+3!x3+…
- sin x = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + … \sin x=\sum_{n=0}^{\infty}\frac{(-1)^nx^{2n+1}}{(2n+1)!}=x-\frac{x^3}{3!}+\frac{x^5}{5!} -\frac{x^7}{7!}+… sinx=∑n=0∞(2n+1)!(−1)nx2n+1=x−3!x3+5!x5−7!x7+…
- cos x = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + … \cos x=\sum_{n=0}^{\infty}\frac{(-1)^nx^{2n}}{(2n)!}=1-\frac{x^2}{2!}+\frac{x^4}{4!} -\frac{x^6}{6!}+… cosx=∑n=0∞(2n)!(−1)nx2n=1−2!x2+4!x4−6!x6+…
泰勒级数也可以表示为n次多项式 T n ( x ) T_n(x) Tn(x)和余项 R n ( x ) R_n(x) Rn(x)之和: f ( x ) = T n ( x ) + R n ( x ) f(x)=T_n(x)+R_n(x) f(x)=Tn(x)+Rn(x)
- T n ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + … + f ( n ) ( x 0 ) n ! ( x − x 0 ) n T_n(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+…+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n Tn(x)=f(x0)+f′(x0)(x−x0)+2!f′′(x0)(x−x0)2+…+n!f(n)(x0)(x−x0)n
- Lagrange拉格朗日余项(具体表达式): R n ( x ) = f ( n + 1 ) ( x ~ ) ( n + 1 ) ! ∣ x − x 0 ∣ n + 1 , x ~ ∈ ( x 0 , x ) R_n(x)=\frac{f^{(n+1)}(\tilde x)}{(n+1)!}|x-x_0|^{n+1},\tilde x\in(x_0,x) Rn(x)=(n+1)!f(n+1)(x~)∣x−x0∣n+1,x~∈(x0,x)
- 假设 M M M为 ∣ f ( n + 1 ) ( x ~ ) ∣ |f^{(n+1)}(\tilde x)| ∣f(n+1)(x~)∣在 x ~ ∈ ( x 0 , x ) \tilde x\in(x_0,x) x~∈(x0,x)中的最大值,则 ∣ R n ( x ) ∣ = M × ∣ x − x 0 ∣ n + 1 ( n + 1 ) ! |R_n(x)|=\frac{M\times|x-x_0|^{n+1}}{(n+1)!} ∣Rn(x)∣=(n+1)!M×∣x−x0∣n+1
- Peano皮亚诺余项(高阶无穷小): R n ( x ) = o ( ( x − x 0 ) n ) R_n(x)=o((x-x_0)^n) Rn(x)=o((x−x0)n)
问:求 i i i^i ii?
**答:**使用欧拉公式 e i θ = cos θ + i sin θ e^{i\theta}=\cos \theta+i\sin \theta eiθ=cosθ+isinθ,可由泰勒级数证明
e i θ = 1 + i θ 1 ! + ( i θ ) ) 2 2 ! + ( i θ ) 3 3 ! + ( i θ ) 4 4 ! + ( i θ ) 5 5 ! + … = 1 + i θ 1 ! − θ 2 2 ! − i θ 3 3 ! + θ 4 4 ! + i θ 5 5 ! + … e^{i\theta}=1+\frac{i\theta}{1!}+\frac{(i\theta))^2}{2!} +\frac{(i\theta)^3}{3!}+\frac{(i\theta)^4}{4!}+\frac{(i\theta)^5}{5!}+…=1+i\frac{\theta}{1!}-\frac{\theta^2}{2!} -i\frac{\theta^3}{3!}+\frac{\theta^4}{4!}+i\frac{\theta^5}{5!}+… eiθ=1+1!iθ+2!(iθ))2+3!(iθ)3+4!(iθ)4+5!(iθ)5+…=1+i1!θ−2!θ2−i3!θ3+4!θ4+i5!θ5+…
cos θ = 1 − θ 2 2 ! + θ 4 4 ! − θ 6 6 ! + … \cos \theta=1-\frac{\theta^2}{2!}+\frac{\theta^4}{4!} -\frac{\theta^6}{6!}+… cosθ=1−2!θ2+4!θ4−6!θ6+…
sin θ = θ − θ 3 3 ! + θ 5 5 ! − θ 7 7 ! + … ⇒ i sin θ = i θ 1 ! − i θ 3 3 ! + i θ 5 5 ! − i θ 7 7 ! + … \sin \theta=\theta-\frac{\theta^3}{3!}+\frac{\theta^5}{5!} -\frac{\theta^7}{7!}+… \Rightarrow i\sin \theta=i\frac{\theta}{1!}-i\frac{\theta^3}{3!}+i\frac{\theta^5}{5!} -i\frac{\theta^7}{7!}+… sinθ=θ−3!θ3+5!θ5−7!θ7+…⇒isinθ=i1!θ−i3!θ3+i5!θ5−i7!θ7+…
∴ e i θ = cos θ + i sin θ \therefore e^{i\theta}=\cos \theta+i\sin \theta ∴eiθ=cosθ+isinθ
令 θ = π \theta=\pi θ=π,得 e i π = cos π + i sin π = − 1 e^{i\pi}=\cos \pi+i\sin \pi=-1 eiπ=cosπ+isinπ=−1
令 θ = π / 2 \theta=\pi/2 θ=π/2,得 e i π / 2 = cos ( π / 2 ) + i sin ( π / 2 ) = i e^{i\pi/2}=\cos (\pi/2)+i\sin (\pi/2)=i eiπ/2=cos(π/2)+isin(π/2)=i
∴ ln i = ln ( e i π / 2 ) = i π / 2 \therefore \ln i = \ln(e^{i\pi/2})=i\pi/2 ∴lni=ln(eiπ/2)=iπ/2
ln ( i i ) = i ln i = i ( i π / 2 ) = − π / 2 ⇒ i i = e − π / 2 \ln (i^i) = i\ln i=i(i\pi/2)=-\pi/2 \Rightarrow i^i=e^{-\pi/2} ln(ii)=ilni=i(iπ/2)=−π/2⇒ii=e−π/2
问:证 ( 1 + x ) n ⩾ 1 + n x (1+x)^n \geqslant 1+nx (1+x)n⩾1+nx,对任意 x > − 1 x>-1 x>−1和任意整数 n ⩾ 2 n\geqslant 2 n⩾2?
**答:**令 f ( x ) = ( 1 + x ) n f(x)=(1+x)^n f(x)=(1+x)n,则 1 + n x 1+nx 1+nx为 f ( x ) f(x) f(x)在 x 0 = 0 x_0=0 x0=0处泰勒级数的前两项
一阶导和二阶导: f ′ ( x ) = n ( 1 + x ) n − 1 , f ′ ′ ( x ) = n ( n − 1 ) ( 1 + x ) n − 2 f'(x)=n(1+x)^{n-1},f''(x)=n(n-1)(1+x)^{n-2} f′(x)=n(1+x)n−1,f′′(x)=n(n−1)(1+x)n−2
$$
\begin{aligned}
f(x)&=f(x_0)+f’(x_0)(x-x_0)+\frac{f’‘(\tilde x)}{2!}(x-x_0)^2=f(0)+f’(0)x+\frac{f’'(\tilde x)}{2!}x^2\
&=1+nx+n(n-1)(1+\tilde x){n-2}x2
\end{aligned}
$$
∵ x ~ ∈ ( x 0 , x ) , x > − 1 \because \tilde x\in(x_0,x),x>-1 ∵x~∈(x0,x),x>−1
∴ x < 0 , x ⩽ x ~ ⩽ 0 ; x > 0 , x ⩾ x ~ ⩾ 0 \therefore x<0,x\leqslant\tilde x\leqslant 0;x>0,x\geqslant\tilde x\geqslant 0 ∴x<0,x⩽x~⩽0;x>0,x⩾x~⩾0
即 ( 1 + x ~ ) n − 2 > 0 , x 2 ⩾ 0 (1+\tilde x)^{n-2}>0,x^2\geqslant0 (1+x~)n−2>0,x2⩾0
又 ∵ n ⩾ 2 \because n\geqslant 2 ∵n⩾2
∴ n > 0 , ( n − 1 ) > 0 \therefore n>0,(n-1)>0 ∴n>0,(n−1)>0
因此, n ( n − 1 ) ( 1 + x ~ ) n − 2 x 2 ⩾ 0 ⇒ ( 1 + x ) n ⩾ 1 + n x n(n-1)(1+\tilde x)^{n-2}x^2\geqslant 0 \Rightarrow (1+x)^n \geqslant 1+nx n(n−1)(1+x~)n−2x2⩾0⇒(1+x)n⩾1+nx
也可以用数学归纳法
3.4.2 Newton’s method 牛顿法
**牛顿法:**求解 f ( x ) = 0 f(x)=0 f(x)=0的迭代过程。从初始值 x 0 x_0 x0开始进行迭代 x n + 1 = x n − f ( x n ) f ′ ( x n ) ( x 1 , x 2 , … 收敛 ) x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}(x_1,x_2,…收敛) xn+1=xn−f′(xn)f(xn)(x1,x2,…收敛)求解 f ( x ) = 0 f(x)=0 f(x)=0
牛顿法的收敛性不能保证,尤其是当初始值离正确解较远时。为了使牛顿法收敛,通常需要初始值足够接近根,且 f ( x ) f(x) f(x)在根附近可微。
- 牛顿法的收敛速度是二次的,即 ∣ x n + 1 − x f ∣ ( x n − x f ) 2 ⩽ δ < 1 , x f 为 f ( x ) = 0 的解 \frac{|x_{n+1}-x_f|}{(x_n-x_f)^2}\leqslant\delta<1,x_f为f(x)=0的解 (xn−xf)2∣xn+1−xf∣⩽δ<1,xf为f(x)=0的解
问:求解 x 2 = 37 x^2=37 x2=37,三位小数
答:
初始值 x 0 = 6 x_0=6 x0=6
x 1 = x 0 − f ( x 0 ) f ′ ( x 0 ) = x 0 − x 0 2 − 37 2 x 0 = 6 − 36 − 37 2 × 6 = 6.083 x_1=x_0-\frac{f(x_0)}{f'(x_0)}=x_0-\frac{x_0^2-37}{2x_0}=6-\frac{36-37}{2\times6}=6.083 x1=x0−f′(x0)f(x0)=x0−2x0x02−37=6−2×636−37=6.083
问:假设 f ( x ) f(x) f(x)是一个可微函数,求解 f ( x ) = 0 f(x)=0 f(x)=0的寻根方法有什么?
**答:**除了牛顿法外,还有Bisection method二分法和Secant Method弦截法
**二分法:**初始值 a 0 , b 0 a_0,b_0 a0,b0,满足 f ( a 0 ) < 0 , f ( b 0 ) > 0 f(a_0)<0,f(b_0)>0 f(a0)<0,f(b0)>0,因为 f ( x ) f(x) f(x)是一个可微函数,所以一定存在一个 x ∈ ( a 0 , b 0 ) x\in(a_0,b_0) x∈(a0,b0)满足 f ( X ) = 0 f(X)=0 f(X)=0。
每一步,检查 f ( ( a n + b n ) / 2 ) f((a_n+b_n)/2) f((an+bn)/2)的正负,如果 < 0 <0 <0,令 b n + 1 = b n , a n + 1 = ( a n + b n ) / 2 b_{n+1}=b_n,a_{n+1}=(a_n+b_n)/2 bn+1=bn,an+1=(an+bn)/2;如果 > 0 >0 >0,令 a n + 1 = a n , b n + 1 = ( a n + b n ) / 2 a_{n+1}=a_n,b_{n+1}=(a_n+b_n)/2 an+1=an,bn+1=(an+bn)/2,直到 f ( ( a n + b n ) / 2 ) = 0 f((a_n+b_n)/2)=0 f((an+bn)/2)=0或误差在可接受范围内
- 二分法的收敛速度是线性的,即 x n + 1 − x f x n − x f ⩽ δ < 1 \frac{x_{n+1}-x_f}{x_n-x_f}\leqslant\delta<1 xn−xfxn+1−xf⩽δ<1
弦截法:初始值 x 0 , x 1 x_0,x_1 x0,x1,迭代 x n + 1 = x n − x n − x n − 1 f ( x n ) − f ( x n − 1 ) f ( x n ) x_{n+1}=x_n-\frac{x_n-x_{n-1}}{f(x_n)-f(x_{n-1})}f(x_n) xn+1=xn−f(xn)−f(xn−1)xn−xn−1f(xn),即用线性近似替代了牛顿法中的 f ′ ( x n ) f'(x_n) f′(xn)
- 弦截法的收敛速度为 ( 1 + 5 ) / 2 (1+\sqrt5)/2 (1+5)/2
3.4.3 Lagrange multipliers 拉格朗日乘数法
**拉格朗日乘数法:**求解具有一个或多个约束的多元函数局部最大值/最小值的常用方法。
问:从原点到平面 2 x + 3 y + 4 z = 12 2x + 3y + 4z = 12 2x+3y+4z=12的距离是多少?
答:
min D 2 = f ( x , y , z ) = x 2 + y 2 + z 2 \min D^2=f(x,y,z)=x^2+y^2+z^2 minD2=f(x,y,z)=x2+y2+z2
s . t . g ( x , y , z ) = 2 x + 3 y + 4 z − 12 = 0 s.t. g(x,y,z)=2x + 3y + 4z - 12=0 s.t.g(x,y,z)=2x+3y+4z−12=0
L ( x , y , z , λ ) = x 2 + y 2 + z 2 + λ ( 2 x + 3 y + 4 z − 12 ) L(x,y,z,\lambda)=x^2+y^2+z^2+\lambda(2x + 3y + 4z - 12) L(x,y,z,λ)=x2+y2+z2+λ(2x+3y+4z−12)
{ L x ′ = 2 x + 2 λ = 0 L y ′ = 2 y + 3 λ = 0 L z ′ = 2 z + 4 λ = 0 L λ ′ = 2 x + 3 y + 4 z − 12 = 0 \begin{cases} L_x'=2x+2\lambda=0\\ L_y'=2y+3\lambda=0\\ L_z'=2z+4\lambda=0\\ L_\lambda'=2x + 3y + 4z - 12=0 \end{cases} ⎩
⎨
⎧Lx′=2x+2λ=0Ly′=2y+3λ=0Lz′=2z+4λ=0Lλ′=2x+3y+4z−12=0
x = 24 29 , y = 36 29 , z = 48 29 , λ = − 24 29 x=\frac{24}{29},y=\frac{36}{29},z=\frac{48}{29},\lambda=-\frac{24}{29} x=2924,y=2936,z=2948,λ=−2924
D = ( 24 29 ) 2 + ( 36 29 ) 2 + ( 48 29 ) 2 = 12 29 D=\sqrt{(\frac{24}{29})^2+(\frac{36}{29})^2+(\frac{48}{29})^2}=\frac{12}{\sqrt{29}} D=(2924)2+(2936)2+(2948)2=2912
原点到平面 a x + b y + c z = d ax+by+cz=d ax+by+cz=d距离公式: D = ∣ d ∣ a 2 + b 2 + c 2 D=\frac{|d|}{\sqrt{a^2+b^2+c^2}} D=a2+b2+c2∣d∣