Python和FastAPI框架开发和容器化部署AWS上支持多种LLM和向量数据库的微服务API

发布于:2025-03-14 ⋅ 阅读:(19) ⋅ 点赞:(0)

用FastAPI创建一个输入提示词和所使用的LLM名称和向量搜索方式的API,返回LLM输出文本,其中用到OpenAI GPT 4o3和AWS Bedrock上的多个LLM模型的API,通过内部的类配置使用的模型和向量数据搜索类型,向量数据搜索类型包括faiss向量数据库和AWS Kendra向量数据库搜索服务,这样的逻辑用设计模式中的工厂模式实现,用Python实现Docker打包项目Python代码并在AWS ECR上注册,在AWS ECS容器中运行,已注册则直接使用现有的。

使用工厂模式实现LLM和向量搜索的灵活切换。以下是实现步骤:

  1. 修改后的项目结构:
fastapi-on-ecs/
├─ app/
│  ├─ src/
│  │  ├─ factories.py
│  │  ├─ llms/
│  │  │  ├─ base.py
│  │  │  ├─ openai.py
│  │  │  ├─ bedrock.py
│  │  ├─ vector_db/
│  │  │  ├─ base.py
│  │  │  ├─ faiss.py
│  │  │  ├─ kendra.py
│  ├─ main.py
│  ├─ Dockerfile
│  ├─ deploy.sh
│  ├─ requirements.txt
  1. 修改后的main.py:
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from src.factories import LLMFactory, VectorSearchFactory

app = FastAPI()

class InferenceRequest(BaseModel):
    prompt: str
    llm_name: str
    vector_search_type: str

@app.post("/generate")
async def generate_text(request: InferenceRequest):
    try:
        # 向量搜索
        vector_search = VectorSearchFactory.create(request.vector_search_type)
        context = vector_search.search(request.prompt)
        
        # LLM推理
        llm = LLMFactory.create(request.llm_name)
        response = llm.generate(f"Context: {context}\nPrompt: {request.prompt}")
        
        return {"response": response}
    
    except ValueError as e:
        raise HTTPException(status_code=400, detail=str(e))
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/models")
async def list_models():
    return {
        "llm_models": LLMFactory.list_models(),
        "vector_dbs": VectorSearchFactory.list_vector_dbs()
    }

@app.get("/")
def root():
    return {"message": "Welcome to LLM Inference API"}
  1. 工厂实现 (src/factories.py):
from typing import Dict, Type
from src.llms.base import BaseLLM
from src.llms.openai import OpenAIGPT
from src.llms.bedrock import BedrockLLM
from src.vector_db.base import BaseVectorDB
from src.vector_db.faiss import FAISSDB
from src.vector_db.kendra import KendraDB

class LLMFactory:
    _models: Dict[str, Type[BaseLLM]] = {
        "gpt-4o3": OpenAIGPT,
        "ai21-jamba": BedrockLLM,
        "claude-3-opus": BedrockLLM,
        # 其他模型映射...
    }

    @classmethod
    def create(cls, model_name: str) -> BaseLLM:
        if model_name not in cls._models:
            raise ValueError(f"Unsupported model: {model_name}")
        return cls._models[model_name](model_name)
    
    @classmethod
    def list_models(cls):
        return list(cls._models.keys())

class VectorSearchFactory:
    _dbs: Dict[str, Type[BaseVectorDB]] = {
        "faiss": FAISSDB,
        "kendra": KendraDB
    }

    @classmethod
    def create(cls, db_type: str) -> BaseVectorDB:
        if db_type not in cls._dbs:
            raise ValueError(f"Unsupported vector DB: {db_type}")
        return cls._dbs[db_type]()
    
    @classmethod
    def list_vector_dbs(cls):
        return list(cls._dbs.keys())
  1. 基础类实现 (src/llms/base.py):
from abc import ABC, abstractmethod

class BaseLLM(ABC):
    @abstractmethod
    def generate(self, prompt: str) -> str:
        pass
  1. OpenAI实现 (src/llms/openai.py):
import openai
from .base import BaseLLM

class OpenAIGPT(BaseLLM):
    def __init__(self, model_name: str):
        self.model_name = model_name
    
    def generate(self, prompt: str) -> str:
        response = openai.ChatCompletion.create(
            model=self.model_name,
            messages=[{"role": "user", "content": prompt}]
        )
        return response.choices[0].message.content
  1. Bedrock实现 (src/llms/bedrock.py):
import boto3
from .base import BaseLLM

class BedrockLLM(BaseLLM):
    def __init__(self, model_id: str):
        self.client = boto3.client('bedrock-runtime')
        self.model_id = model_id
    
    def generate(self, prompt: str) -> str:
        body = {
            "prompt": prompt,
            "maxTokens": 1024
        }
        response = self.client.invoke_model(
            modelId=self.model_id,
            body=json.dumps(body)
        return json.loads(response['body'].read())['completion']
  1. 向量数据库实现示例 (src/vector_db/faiss.py):
import faiss
import numpy as np
from .base import BaseVectorDB

class FAISSDB(BaseVectorDB):
    def __init__(self):
        self.index = faiss.IndexFlatL2(768)
        # 加载预构建的索引
    
    def search(self, query: str) -> str:
        # 实现向量搜索逻辑
        return "FAISS search results"
  1. 更新requirements.txt:
fastapi==0.109.2
uvicorn==0.27.1
openai>=1.0.0
boto3>=1.34.0
faiss-cpu>=1.7.4

部署步骤:

  1. 构建并推送Docker镜像:
export AWS_ACCOUNT_ID=123456789012
export AWS_REGION=us-west-2
export REGISTRY_NAME=llm-api
export TAG=latest

# 构建镜像
docker build --platform linux/amd64 -t $REGISTRY_NAME .

# 推送镜像
aws ecr get-login-password | docker login --username AWS --password-stdin $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com
docker tag $REGISTRY_NAME $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com/$REGISTRY_NAME:$TAG
docker push $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com/$REGISTRY_NAME:$TAG
  1. ECS任务定义需要包含以下权限(通过IAM角色):
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": "bedrock:*",
            "Resource": "*"
        },
        {
            "Effect": "Allow",
            "Action": "kendra:*",
            "Resource": "*"
        }
    ]
}

该实现的关键点:

  1. 使用工厂模式灵活切换模型和向量数据库
  2. 通过boto3集成AWS Bedrock服务
  3. 提供标准化的API接口
  4. 容器化部署支持
  5. 完善的错误处理机制

测试API:

curl -X POST http://<ALB_DNS>/generate \
  -H "Content-Type: application/json" \
  -d '{
    "prompt": "Explain quantum computing",
    "llm_name": "claude-3-opus",
    "vector_search_type": "kendra"
  }'