准备:
1.一台开启的hadoop集群
2.idea(java代码编辑器)
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.9.2</version>
</dependency>
WordCountMapper.java
package com.peizheng.bigdata;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
/*
KEYIN, 偏移量, LongWritable
VALUEIN, 文本, Text
KEYOUT, 文本(单词), Text
VALUEOUT, 次数, LongWritable
*/
public class WordCountMapper extends Mapper<LongWritable, Text, Text, LongWritable> {
private Text outKey = new Text();
private LongWritable outValue = new LongWritable(1);
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, LongWritable>.Context context) throws IOException, InterruptedException {
// "hadoop hadoop hadoop"
String line = value.toString();
// ["hadoop", "hadoop", "hadoop"]
String[] words = line.split(" ");
// <"hadoop", 1>
// <"hadoop", 1>
// <"hadoop", 1>
for (String word : words) {
outKey.set(word);
// <"hadoop", 1>
context.write(outKey, outValue);
}
}
}
WordCountReducer.java
package com.peizheng.bigdata;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
/*
KEYIN, 单词 Text
VALUEIN, 次数(1次) LongWritable
KEYOUT, 单词 Text
VALUEOUT, 次数(总数) LongWritable
*/
public class WordCountReducer extends Reducer<Text, LongWritable, Text, LongWritable> {
@Override
protected void reduce(Text key, Iterable<LongWritable> values, Reducer<Text, LongWritable, Text, LongWritable>.Context context) throws IOException, InterruptedException {
// <hadoop,[1,1,1]> -> <hadoop, 3>
long sum = 0;
for (LongWritable value : values) {
sum += value.get();
}
//
LongWritable outValue = new LongWritable(sum);
// sum = 3
context.write(key, outValue);
}
}
WordCountDriver.java
package com.peizheng.bigdata;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class WordCountDriver {
public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
// 1 获取job
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
// 2 设置jar包的路径
job.setJarByClass(WordCountDriver.class);
// 3 关联mapper、Reducer
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
// 4 设置map输出的key、value类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LongWritable.class);
// 5 设置最终输出的key、value类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);
// 6 设置要处理的数据集输入路径和输出路径
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
// 7 提交
job.waitForCompletion(true);
}
}
虚拟机运行集群,jar包启动
vim word.txt
写一些单词
hadoop fs -put word.txt /
yarn jar HadoopDemo-1.0-SNAPSHOT.jar com.bigdata.WordCountDriver /word.txt /output
hadoop fs -cat /output/part*