Chapter 26:Discriminated Unions_《C++ Templates》notes

发布于:2025-03-28 ⋅ 阅读:(24) ⋅ 点赞:(0)


1. Key Concepts & Implementation

1.1 Storage and Type Discriminator
A discriminated union needs:

  • Type-safe storage for multiple types
  • A discriminator tag to track active type
#include <type_traits>
#include <stdexcept>

template<typename... Types>
class Variant {
    enum class TypeTag { None, Int, Double, String };
    TypeTag tag = TypeTag::None;

    static constexpr size_t BufferSize = 
        std::max({sizeof(int), sizeof(double), sizeof(std::string)});
    alignas(std::max_align_t) char buffer[BufferSize];

    template<typename T> void destroy() {
        if constexpr (!std::is_trivially_destructible_v<T>) {
            reinterpret_cast<T*>(buffer)->~T();
        }
    }

public:
    // Default constructor
    Variant() = default;

    // Constructor for supported types
    template<typename T>
    Variant(T&& value) {
        emplace<std::decay_t<T>>(std::forward<T>(value));
    }

    ~Variant() { reset(); }

    template<typename T, typename... Args>
    void emplace(Args&&... args) {
        reset();
        new(buffer) T(std::forward<Args>(args)...);
        if constexpr (std::is_same_v<T, int>) tag = TypeTag::Int;
        else if constexpr (std::is_same_v<T, double>) tag = TypeTag::Double;
        else if constexpr (std::is_same_v<T, std::string>) tag = TypeTag::String;
    }

    void reset() {
        switch(tag) {
            case TypeTag::Int: destroy<int>(); break;
            case TypeTag::Double: destroy<double>(); break;
            case TypeTag::String: destroy<std::string>(); break;
            default: break;
        }
        tag = TypeTag::None;
    }

    // Type checkers
    bool is_int() const { return tag == TypeTag::Int; }
    bool is_double() const { return tag == TypeTag::Double; }
    bool is_string() const { return tag == TypeTag::String; }

    // Value accessors
    int& get_int() { 
        if (tag != TypeTag::Int) throw std::bad_variant_access{};
        return *reinterpret_cast<int*>(buffer);
    }
    
    // Similar get_double(), get_string()...
};

Test Case:

int main() {
    Variant<int, double, std::string> v;
    v.emplace<int>(42);
    std::cout << (v.is_int() ? "Int: " + std::to_string(v.get_int()) : "Not int") << "\n"; // Int: 42
    
    v.emplace<std::string>("Hello");
    std::cout << (v.is_string() ? "String: " + v.get_string() : "Not string") << "\n"; // String: Hello
    
    try { v.get_double(); } 
    catch(const std::exception& e) { std::cout << e.what() << "\n"; } // Throws
}

2. Visitor Pattern Implementation

Use overloaded functors or generic lambdas to handle different types.

template<typename... Fs>
struct Overload : Fs... { using Fs::operator()...; };

template<typename... Fs> Overload(Fs...) -> Overload<Fs...>;

template<typename Variant, typename... Visitors>
decltype(auto) visit(Variant&& var, Visitors&&... vis) {
    auto&& visitor = Overload{std::forward<Visitors>(vis)...};
    if (var.is_int()) return visitor(var.get_int());
    else if (var.is_double()) return visitor(var.get_double());
    else if (var.is_string()) return visitor(var.get_string());
    throw std::bad_variant_access{};
}

Test Case:

int main() {
    Variant<int, double, std::string> v = 3.14;
    
    visit(v, 
        [](int i) { std::cout << "Int: " << i; },
        [](double d) { std::cout << "Double: " << d; },
        [](const std::string& s) { std::cout << "String: " << s; }
    ); // Double: 3.14
}

3. Copy/Move Semantics

Implement proper copy/move constructors and assignment operators.

Variant(const Variant& other) {
    switch(other.tag) {
        case TypeTag::Int: emplace<int>(other.get_int()); break;
        case TypeTag::Double: emplace<double>(other.get_double()); break;
        case TypeTag::String: emplace<std::string>(other.get_string()); break;
        default: break;
    }
}

Variant& operator=(const Variant& other) {
    if (this != &other) {
        reset();
        // ... same as copy constructor ...
    }
    return *this;
}

// Similar for move operations...

Test Case:

int main() {
    Variant<int, double, std::string> v1 = "Test";
    auto v2 = v1; // Copy constructor
    std::cout << (v2.is_string() ? v2.get_string() : "") << "\n"; // Test
    
    Variant v3 = std::move(v1); // Move constructor
    std::cout << (v3.is_string() ? v3.get_string() : "") << "\n"; // Test
    std::cout << (v1.is_string() ? "v1 still has value" : "v1 empty") << "\n"; // v1 empty
}

4. Exception Safety

Ensure exception safety during assignment/emplacement.

template<typename T, typename... Args>
void emplace(Args&&... args) {
    reset();
    try {
        new(buffer) T(std::forward<Args>(args)...);
        // Update tag...
    } catch(...) {
        tag = TypeTag::None; // Rollback state
        throw;
    }
}

Multiple-Choice Questions

Question 1
Which techniques are valid for implementing storage in a discriminated union (variant)?
A. Using void* and dynamic allocation
B. Leveraging std::aligned_storage with a type tag
C. Storing raw bytes in a char array with alignment
D. Using a union of all possible types
E. Allocating memory via new for each type

Correct Answers: B, C, D
Explanation:

  • std::aligned_storage (B) ensures proper alignment. A raw char array © with manual alignment management is also valid. A union (D) directly holds all types but requires explicit tagging.
  • void* (A) and new (E) introduce unnecessary overhead and violate RAII principles.

Question 2
What is the purpose of a “type tag” in a discriminated union?
A. To track the index of the active type
B. To enable RTTI (Run-Time Type Information)
C. To avoid undefined behavior during destruction
D. To optimize alignment calculations
E. To validate assignments at compile-time

Correct Answers: A, C
Explanation: The type tag (A) identifies the active type to ensure the correct destructor © is called. It doesn’t use RTTI (B) or compile-time checks (E).


Question 3
Which operations must a discriminated union handle explicitly?
A. Copy construction
B. Move assignment
C. Destruction based on the active type
D. Compile-time type checks
E. Dynamic memory reallocation

Correct Answers: A, B, C
Explanation: Copy/move operations (A, B) and destruction © depend on the active type. D is handled via templates, and E is unnecessary with RAII.


Question 4
How does the visitor pattern apply to a discriminated union?
A. By using virtual functions for each type
B. Via std::visit with overloaded function objects
C. Through template specialization for each type
D. By storing a function pointer
E. Using CRTP (Curiously Recurring Template Pattern)

Correct Answers: B, C
Explanation: std::visit (B) and template specializations © are common. Virtual functions (A) and CRTP (E) are not directly applicable.


Question 5
Which C++17 features simplify variant implementations?
A. if constexpr
B. std::variant
C. Fold expressions
D. Structured bindings
E. Class template argument deduction (CTAD)

Correct Answers: A, B
Explanation: if constexpr (A) simplifies type checks. std::variant (B) is a standard implementation. Others are unrelated.


Question 6
What is essential for exception-safe variant assignment?
A. Using the copy-and-swap idiom
B. Destroying the old object before assignment
C. noexcept move operations
D. Allocating memory before assignment
E. Type traits for trivial destructibility

Correct Answers: A, C
Explanation: Copy-and-swap (A) and noexcept moves © ensure exception safety. Premature destruction (B) risks leaks.


Question 7
Which type traits are critical for variant storage management?
A. std::is_trivially_copyable
B. std::is_empty
C. std::is_nothrow_move_constructible
D. std::is_same
E. std::is_abstract

Correct Answers: A, C
Explanation: Trivial copy (A) and noexcept move © traits optimize storage. Others are irrelevant.


Question 8
How to prevent undefined behavior when accessing a variant?
A. Runtime type checks with std::get_if
B. Compile-time assertions
C. Throwing std::bad_variant_access
D. Using std::visit for all accesses
E. Tag-based conditional logic

Correct Answers: A, C, D
Explanation: Runtime checks (A), exceptions ©, and std::visit (D) ensure safe access. Compile-time checks (B) are insufficient for dynamic types.


Question 9
What is the role of std::launder in variant implementations?
A. To avoid pointer optimization issues
B. To enable constexpr context storage
C. To manage memory alignment
D. To support trivially destructible types
E. To prevent memory leaks

Correct Answers: A
Explanation: std::launder (A) ensures correct pointer semantics. Others are unrelated.


Question 10
Which optimizations are possible for variants with trivially destructible types?
A. Skipping destructor calls
B. Using memcpy for copies
C. Storing types in a union without a tag
D. Avoiding move constructors
E. Inlining accessor functions

Correct Answers: A, B
Explanation: Trivial types allow skipping destructors (A) and using memcpy (B). Others are incorrect.


Design Questions

Question 1
Implement a simplified Variant class supporting int, double, and std::string with type-safe access.

Solution:

#include <string>
#include <stdexcept>
#include <type_traits>

template<typename... Types>
class Variant {
    using LargestType = std::aligned_union_t<0, Types...>;
    LargestType storage;
    size_t typeIndex;

public:
    template<typename T>
    Variant(T&& val) : typeIndex(sizeof...(Types)) {
        static_assert((std::is_same_v<std::decay_t<T>, Types> || ...), "Invalid type");
        new(&storage) std::decay_t<T>(std::forward<T>(val));
        typeIndex = index_of<std::decay_t<T>>();
    }

    ~Variant() {
        // Call destructor based on typeIndex (omitted for brevity)
    }

    template<typename T>
    T& get() {
        if (typeIndex != index_of<T>()) throw std::bad_variant_access{};
        return *reinterpret_cast<T*>(&storage);
    }

private:
    template<typename T>
    static constexpr size_t index_of() {
        size_t index = 0;
        ((std::is_same_v<T, Types> ? false : (++index, true)) && ...);
        return index;
    }
};

// Test
int main() {
    Variant<int, double, std::string> v(42);
    assert(v.get<int>() == 42);
}

Question 2
Design a visitor mechanism for the Variant class using std::visit-like syntax.

Solution:

template<typename... Fs>
struct Overload : Fs... { using Fs::operator()...; };

template<typename... Fs> Overload(Fs...) -> Overload<Fs...>;

template<typename Variant, typename... Visitors>
auto visit(Variant&& v, Visitors&&... vis) {
    auto&& overload = Overload{std::forward<Visitors>(vis)...};
    switch (v.type_index()) {
        case 0: return overload(v.template get<0>());
        // ... handle other cases
    }
}

// Test
int main() {
    Variant<int, std::string> v("hello");
    visit(v, [](int i) { /* ... */ }, [](const std::string& s) { assert(s == "hello"); });
}

Question 3
Implement move semantics for the Variant class, ensuring exception safety.

Solution:

Variant(Variant&& other) noexcept((std::is_nothrow_move_constructible_v<Types> && ...)) {
    // Move each possible type with noexcept check
}

Variant& operator=(Variant&& other) {
    if (this != &other) {
        this->~Variant();
        new(this) Variant(std::move(other));
    }
    return *this;
}

// Test
int main() {
    Variant<std::string> v1("test");
    auto v2 = std::move(v1);
    assert(v2.get<std::string>() == "test");
}

Question 4
Add a emplace method to construct a type in-place within the Variant.

Solution:

template<typename T, typename... Args>
void emplace(Args&&... args) {
    static_assert((std::is_same_v<T, Types> || ...), "Invalid type");
    this->~Variant();
    new(&storage) T(std::forward<Args>(args)...);
    typeIndex = index_of<T>();
}

// Test
int main() {
    Variant<std::string> v;
    v.emplace<std::string>(3, 'a');
    assert(v.get<std::string>() == "aaa");
}

Question 5
Implement a Variant copy constructor handling non-trivially copyable types.

Solution:

Variant(const Variant& other) : typeIndex(other.typeIndex) {
    // Use switch-case to copy-construct based on typeIndex
    switch (typeIndex) {
        case 0: new(&storage) std::decay_t<decltype(other.get<0>())>(other.get<0>()); break;
        // ... other cases
    }
}

// Test
int main() {
    Variant<std::string> v1("copy");
    Variant<std::string> v2(v1);
    assert(v2.get<std::string>() == "copy");
}

Code Testing

Each code snippet includes a main function with test cases. Compile with C++17 or later:

g++ -std=c++17 -o test test.cpp && ./test

Ensure all assertions pass and valgrind reports no memory leaks.

5. Key Challenges

  1. Memory Alignment: Use alignas and properly sized buffer.
  2. Type-Safe Access: Runtime type checking before value access.
  3. Generic Visitors: Leverage C++17’s class template argument deduction for overload sets.
  4. Move Semantics: Properly handle moved-from states.

Compile all examples with:

g++ -std=c++17 variant_example.cpp -o variant_example