题目
还是一道很常规的题目
按键功能
S4界面切换,s8s9修改参数,有上下限限制。
/*按键函数区域*/
void Key_Proc(){
if(Key_Slow) return;
Key_Slow = 1;//按键减速防止再次进入
Key_Val = Key_Read();
Key_Down = Key_Val&(Key_Val^Key_Old);
Key_Up = ~Key_Val&(Key_Val^Key_Old);
Key_Old = Key_Val;
switch(Key_Down){
case 4:
if(++Seg_Mode == 3) Seg_Mode = 0;//显示界面切换
break;
case 8:
if(Seg_Mode == 2){//参数界面有效-
temp_limit = temp_limit==20?35:temp_limit-1;
}
break;
case 9:
if(Seg_Mode == 2){//参数界面有效+
temp_limit = temp_limit==35?20:temp_limit+1;
}
break;
}
}
显示功能
界面1显示频率,高位熄灭,界面二度数ds18b20数据,高位熄灭,界面3显示设置的温度参数
都是常规的显示功能
DAC功能
DAC功能与ne555获取的频率有关,是常见的分段处理一次函数形式。
对于这些小数类型的电压, 我们直接对应的电压*51,再进行四舍五入来获取对应的char值,进行dac输出更加准确。让D_Volt直接就是char类型的值,不再外面进行额外操作。
/*数码管显示函数区域*/
void Seg_Proc(){
if(Seg_Slow) return;
Seg_Slow = 1;//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~数码管减速防止再次进入
tempt = rd_temperature();
if(freq<=200){
D_Volt = 25;
}
else if(freq>=2000){
D_Volt = 230;
}
else{
D_Volt = (freq-200)*0.11 + 25;
}
Da_write(D_Volt);
if(tempt>temp_limit){
Relay_flag = 1;
}
else Relay_flag = 0;
if(tempt>30){
L8_start = 1;
}
else L8_start = 0;
switch(Seg_Mode){
case 0://信号界面
Seg_Buf[0] = 11;//P
Seg_Buf[1] = 10;
Seg_Buf[2] = 10;
Seg_Buf[3] = freq>10000?freq/10000:10;
Seg_Buf[4] = freq>1000?freq%10000/1000:10;
Seg_Buf[5] = freq>100?freq%1000/100:10;
Seg_Buf[6] = freq>10?freq%100/10:10;
Seg_Buf[7] = freq%10;
Point[6] = 0;
break;
case 1:
Seg_Buf[0] = 12;//C
Seg_Buf[1] = 10;
Seg_Buf[2] = 10;
Seg_Buf[3] = 10;
Seg_Buf[4] = 10;
Seg_Buf[5] = (unsigned char)tempt>10?(unsigned char)tempt/10:10;
Seg_Buf[6] = (unsigned char)tempt%10;
Point[6] = 1;
Seg_Buf[7] = (unsigned int)(tempt*10)%10;
break;
case 2:
Point[6] = 0;
Seg_Buf[0] = 13;//U
Seg_Buf[1] = 10;
Seg_Buf[2] = 10;
Seg_Buf[3] = 10;
Seg_Buf[4] = 10;
Seg_Buf[5] = 10;
Seg_Buf[6] = temp_limit/10;
Seg_Buf[7] = temp_limit%10;
break;
}
}
继电器Led功能
对于采集到的温度进行判断,就能完成继电器控制和L8闪烁控制,L12就是常规的界面指示灯。
/*Led函数区域*/
void Led_Proc(){
Relay(Relay_flag);
Led_Buf[0] = (Seg_Mode == 0);
Led_Buf[1] = (Seg_Mode == 1);
Led_Buf[7] = L8_flag;
}
完整主函数
/*头文件区域*/
#include <STC15F2K60S2.H>
#include <Key.h>
#include <Seg.h>
#include <Led.h>
#include <Init.h>
#include <onewire.h>
#include <iic.h>
#include <intrins.h>
/*参数变量区域*/
unsigned char Seg_Slow,Key_Slow;
unsigned char Key_Up,Key_Down,Key_Val,Key_Old;
unsigned char Seg_Pos;
//数码管Led函数区域
unsigned char Seg_Buf[8] = {10,10,10,10,10,10,10,10};
unsigned char Led_Buf[8] = {0,0,0,0,0,0,0,0};
unsigned char Point[8] = {0,0,0,0,0,0,0,0};
//显示模式
unsigned char Seg_Mode;//0是信号,1温度,2参数
//数据变量区域
float tempt;//温度数据
unsigned char temp_limit = 25;//温度参数
unsigned char D_Volt;//DAC输出电压参数
unsigned int Time_1s;
unsigned int freq;//频率值
unsigned char Time_100ms;
bit L8_flag;
bit L8_start;
bit Relay_flag;
/*按键函数区域*/
void Key_Proc(){
if(Key_Slow) return;
Key_Slow = 1;//按键减速防止再次进入
Key_Val = Key_Read();
Key_Down = Key_Val&(Key_Val^Key_Old);
Key_Up = ~Key_Val&(Key_Val^Key_Old);
Key_Old = Key_Val;
switch(Key_Down){
case 4:
if(++Seg_Mode == 3) Seg_Mode = 0;//显示界面切换
break;
case 8:
if(Seg_Mode == 2){//参数界面有效-
temp_limit = temp_limit==20?35:temp_limit-1;
}
break;
case 9:
if(Seg_Mode == 2){//参数界面有效+
temp_limit = temp_limit==35?20:temp_limit+1;
}
break;
}
}
/*数码管显示函数区域*/
void Seg_Proc(){
if(Seg_Slow) return;
Seg_Slow = 1;//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~数码管减速防止再次进入
tempt = rd_temperature();
if(freq<=200){
D_Volt = 25;
}
else if(freq>=2000){
D_Volt = 230;
}
else{
D_Volt = (freq-200)*0.11 + 25;
}
Da_write(D_Volt);
if(tempt>temp_limit){
Relay_flag = 1;
}
else Relay_flag = 0;
if(tempt>30){
L8_start = 1;
}
else L8_start = 0;
switch(Seg_Mode){
case 0://信号界面
Seg_Buf[0] = 11;//P
Seg_Buf[1] = 10;
Seg_Buf[2] = 10;
Seg_Buf[3] = freq>10000?freq/10000:10;
Seg_Buf[4] = freq>1000?freq%10000/1000:10;
Seg_Buf[5] = freq>100?freq%1000/100:10;
Seg_Buf[6] = freq>10?freq%100/10:10;
Seg_Buf[7] = freq%10;
Point[6] = 0;
break;
case 1:
Seg_Buf[0] = 12;//C
Seg_Buf[1] = 10;
Seg_Buf[2] = 10;
Seg_Buf[3] = 10;
Seg_Buf[4] = 10;
Seg_Buf[5] = (unsigned char)tempt>10?(unsigned char)tempt/10:10;
Seg_Buf[6] = (unsigned char)tempt%10;
Point[6] = 1;
Seg_Buf[7] = (unsigned int)(tempt*10)%10;
break;
case 2:
Point[6] = 0;
Seg_Buf[0] = 13;//U
Seg_Buf[1] = 10;
Seg_Buf[2] = 10;
Seg_Buf[3] = 10;
Seg_Buf[4] = 10;
Seg_Buf[5] = 10;
Seg_Buf[6] = temp_limit/10;
Seg_Buf[7] = temp_limit%10;
break;
}
}
/*Led函数区域*/
void Led_Proc(){
Relay(Relay_flag);
Led_Buf[0] = (Seg_Mode == 0);
Led_Buf[1] = (Seg_Mode == 1);
Led_Buf[7] = L8_flag;
}
/*定时器0初始化函数区域*/
void Timer0_Init(void) //1毫秒@12.000MHz
{
AUXR &= 0x7F; //定时器时钟12T模式
TMOD &= 0xF0; //设置定时器模式
TMOD |= 0x05;
TL0 = 0x00; //设置定时初始值
TH0 = 0x00; //设置定时初始值
TF0 = 0; //清除TF0标志
TR0 = 1; //定时器0开始计时
}
/*定时器1初始化函数*/
void Timer1_Init(void) //1毫秒@12.000MHz
{
AUXR &= 0xBF; //定时器时钟12T模式
TMOD &= 0x0F; //设置定时器模式
TL1 = 0x18; //设置定时初始值
TH1 = 0xFC; //设置定时初始值
TF1 = 0; //清除TF1标志
TR1 = 1; //定时器1开始计时
ET1 = 1;
EA = 1;
}
/*定时器1中断服务函数区域*/
void Timer1_Service() interrupt 3
{
if(++Seg_Slow == 100) Seg_Slow = 0;
if(++Key_Slow == 20) Key_Slow = 0;
if(++Seg_Pos == 8) Seg_Pos = 0;
Seg_Disp(Seg_Pos,Seg_Buf[Seg_Pos],Point[Seg_Pos]);
Led_Disp(Seg_Pos,Led_Buf[Seg_Pos]);
if(++Time_1s == 1000){//获取频率值
Time_1s = 0;
freq = (TH0<<8)|TL0;
TL0 = TH0 = 0;
}
if(L8_start){
if(++Time_100ms == 100){
Time_100ms = 0;
L8_flag ^= 1;
}
}
else{
Time_100ms = 0;
L8_flag = 0;
}
}
//750ms延时保证温度数据正常显示
void Delay750ms(void) //@12.000MHz
{
unsigned char data i, j, k;
_nop_();
_nop_();
i = 35;
j = 51;
k = 182;
do
{
do
{
while (--k);
} while (--j);
} while (--i);
}
/*主函数区域*/
void main(){
Sys_Init();
Timer1_Init();
Timer0_Init();
tempt = rd_temperature();//~~~~~~~~~~~~~~~~~~~~~~~~~~~温度上电读取一次
Delay750ms();//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~配合延时750ms让温度显示没有系统默认值
while(1){
Key_Proc();
Seg_Proc();
Led_Proc();
}
}