构建网络1: import torch.nn as nn class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 16, 3, padding=1) self.conv2 = nn.Conv2d(16, 32, 3, padding=1) self.conv3 = nn.Conv2d(32, 32, 3, padding=1) self.conv4 = nn.Conv2d(32, 32, 3, padding=1) self.conv5 = nn.Conv2d(32, 64, 3, padding=1) self.fc1 = nn.Linear(64, 10) def forward(self, x): x = nn.functional.relu(self.conv1(x)) x= nn.functional.max_pool2d(nn.functional.relu (self.conv2(x)), 2) x = nn.functional.relu(self.conv3(x)) x = nn.functional.max_pool2d(nn.functional.relu (self.conv4(x)), 2) x = nn.functional.max_pool2d(nn.functional.relu (self.conv5(x)), 2) x = x.view(-1, 64) x = self.fc1(x) return x 构建网络2: import torch.nn as nn class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 16, 3, padding=1) self.conv2 = nn.Conv2d(16, 32, 3, padding=1) self.conv3 = nn.Conv2d(32, 32, 3, padding=1) self.conv4 = nn.Conv2d(32, 10, 3, padding=1) self.fc1 = nn.Linear(10, 10) def forward(self, x): x = nn.functional.relu(self.conv1(x)) x = nn.functional.max_pool2d(nn.functional.relu (self.conv2(x)), 2) x = nn.functional.relu(self.conv3(x)) x = nn.functional.max_pool2d(nn.functional.relu (self.conv4(x)), 2) x = nn.functional.adaptive_avg_pool2d(x, (1, 1)) x = x.view(-1, 10) x = self.fc1(x) return x 构建网络3: import torch.nn as nn class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 16, 3, padding=1) self.conv2 = nn.Conv2d(16, 128, 3, padding=1) self.conv3 = nn.Conv2d(128, 256, 3, padding=1) self.conv4 = nn.Conv2d(256, 256, 3, padding=1) self.conv5 = nn.Conv2d(256, 256, 3, padding=1) self.fc1 = nn.Linear(256, 10) def forward(self, x): x = nn.functional.relu(self.conv1(x)) x = nn.functional.max_pool2d(nn.functional.relu (self.conv2(x)), 2) x = nn.functional.relu(self.conv3(x)) x = nn.functional.max_pool2d(nn.functional.relu (self.conv4(x)), 2) x = nn.functional.relu(self.conv5(x)) x = nn.functional.adaptive_avg_pool2d(x, (1, 1)) x = x.view(-1, 256) x = self.fc1(x) return x |