partitionBy
将数据按照指定 Partitioner 重新进行分区。Spark 默认的分区器是 HashPartitioner
val rdd: RDD[(Int, String)] =
sc.makeRDD(Array((1,"aaa"),(2,"bbb"),(3,"ccc")),3)
val rdd2: RDD[(Int, String)] =
rdd.partitionBy(new HashPartitioner(2))
groupByKey
将数据源的数据根据 key 对 value 进行分组
val dataRDD1 =
sc.makeRDD(List(("a",1),("b",2),("c",3),("a",4)))
val dataRDD2 = dataRDD1.groupByKey()
val dataRDD3 = dataRDD1.groupByKey(2)
val dataRDD4 = dataRDD1.groupByKey(new HashPartitioner(2))
reduceByKey
可以将数据按照相同的 Key 对 Value 进行聚合
val dataRDD1 = sc.makeRDD(List(("a",1),("b",2),("c",3),("a",4)))
val dataRDD2 = dataRDD1.reduceByKey(_+_)
val dataRDD3 = dataRDD1.reduceByKey(_+_, 2)
aggregateByKey
将数据根据不同的规则进行分区内计算和分区间计算val dataRDD1 =
sc.makeRDD(List(("a",1),("b",2),("c",3),("a",4)))
val dataRDD2 =
dataRDD1.aggregateByKey(0)(_+_,_+_)
foldByKey
val dataRDD1 =
sc.makeRDD(List(("a",1),("b",2),("c",3),("a",4)))
val dataRDD2 = dataRDD1.foldByKey(0)(_+_)
sortByKey
val dataRDD1 = sc.makeRDD(List(("a",1),("b",2),("c",3)))
val sortRDD1: RDD[(String, Int)] = dataRDD1.sortByKey(true)
val sortRDD2: RDD[(String, Int)] = dataRDD1.sortByKey(false)
join
val rdd: RDD[(Int, String)] = sc.makeRDD(Array((1, "a"), (2, "b"), (3, "c")))
val rdd1: RDD[(Int, Int)] = sc.makeRDD(Array((1, 4), (2, 5), (3, 6)))
rdd.join(rdd1).collect().foreach(println)
累加器
val rdd = sparkContext.makeRDD(List(1,2,3,4,5))
// 声明累加器
var sum = sparkContext.longAccumulator("sum");
rdd.foreach(
num => {
// 使用累加器
sum.add(num)
}
)
// 获取累加器的值
println("sum = " + sum.value)
创建自定义累加器:
class WordCountAccumulator extends AccumulatorV2[String,mutable.Map[String,Long]] {
var map:mutable.Map[String,Long] = mutable.Map()
override def isZero: Boolean = map.isEmpty
override def copy(): AccumulatorV2[String, mutable.Map[String,Long]] = new WordCountAccumulator
override def reset(): Unit = map.clear()
override def add(v: String): Unit = {
map(v) = map.getOrElse(v,0L)+1L
}
override def merge(other: AccumulatorV2[String, mutable.Map[String,Long]
]): Unit = {
val map1 = map
val map2 = other.value
map = map1.foldLeft(map2)(
(innerMap,kv)=>{
innerMap(kv._1) = innerMap.getOrElse(kv._1,0L)+kv._2
innerMap
}
)
}
override def value: mutable.Map[String,Long] = map
}
调用自定义累加器:
val rdd = sparkContext.makeRDD(
List("spark","scala","spark hadoop","hadoop")
)
val acc = new WordCountAccumulator
sparkContext.register(acc)
rdd.flatMap(_.split(" ")).foreach(
word=>acc.add(word)
)
println(acc.value)
广播变量
val rdd1 = sparkContext.makeRDD(List( ("a",1), ("b", 2), ("c", 3), ("d", 4) ),4)
val list = List( ("a",4), ("b", 5), ("c", 6), ("d", 7))
val broadcast :Broadcast[List[(String,Int)]] = sparkContext.broadcast(list)
val resultRDD :RDD[(String,(Int,Int))] = rdd1.map{
case (key,num)=> {
var num2 = 0
for((k,v)<-broadcast.value){
if(k == key) {
num2 = v
}
}
(key,(num,num2))
}
}
resultRDD.collect().foreach(println)
sparkContext.stop()
}
reduce
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
val reduceResult: Int = rdd.reduce(_+_)
println(reduceResult)
foreach
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
rdd.collect().foreach(println)
def count(): Long
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
val countResult: Long = rdd.count()
println(countResult)
first
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
val firstResult: Int = rdd.first()
println(firstResult)
take
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
val takeResult: Array[Int] = rdd.take(2)
takeResult.foreach(println)
aggregate
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4),8)
// 将该 RDD 所有元素相加得到结果
val result1: Int = rdd.aggregate(0)(_+_, _+_)
val result2: Int = rdd.aggregate(10)(_+_,_+_)
println(result1)
println("**********")
fold
val rdd: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4))
val foldResult: Int = rdd.fold(0)(_+_)
println(foldResult)
countByKey
val rdd: RDD[(Int, String)] = sc.makeRDD(List((1, "a"), (1, "a"), (1, "a"), (2,"b"), (3, "c"), (3, "c")))
val result: collection.Map[Int, Long] = rdd.countByKey()
print(result)
11) save 相关算子
➢ 函数签名
def saveAsTextFile(path: String): Unit
def saveAsObjectFile(path: String): Unit
def saveAsSequenceFile(
path: String,
codec: Option[Class[_ <: CompressionCodec]] = None): Unit //了解即可
➢ 函数说明
将数据保存到不同格式的文件中
val rdd: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4))
// 保存成 Text 文件
rdd.saveAsTextFile("Spark-core/output/output")
// 序列化成对象保存到文件
rdd.saveAsObjectFile("Spark-core/output/output1")