分步解释和答案:
在Rényi差分隐私(RDP)框架中,通过贝叶斯因子和Rényi散度的关系可以推导出关于后验变化的概率保证。以下是关键步骤的详细解释:
1. 贝叶斯因子的定义与分解
设相邻数据集 D D D 和 D ′ D' D′,机制 f f f 的输出为随机变量 X ∼ f ( D ) = P X \sim f(D) = P X∼f(D)=P 或 X ∼ f ( D ′ ) = Q X \sim f(D') = Q X∼f(D′)=Q。
根据贝叶斯定理,后验概率比(即贝叶斯因子)定义为:
R post ( D , D ′ ) = p ( D ∣ X ) p ( D ′ ∣ X ) = p ( X ∣ D ) p ( D ) p ( X ∣ D ′ ) p ( D ′ ) . R_{\text{post}}(D, D') = \frac{p(D \mid X)}{p(D' \mid X)} = \frac{p(X \mid D) p(D)}{p(X \mid D') p(D')}. Rpost(D,D′)=p(D′∣X)p(D∣X)=p(X∣D′)p(D′)p(X∣D)p(D).
其中:
- p ( D ) p(D) p(D) 和 p ( D ′ ) p(D') p(D′) 是数据集的先验概率,
- p ( X ∣ D ) = P ( X ) p(X \mid D) = P(X) p(X∣D)=P(X) 和 p ( X ∣ D ′ ) = Q ( X ) p(X \mid D') = Q(X) p(X∣D′)=Q(X) 是似然函数。
先验概率比为:
R prior ( D , D ′ ) = p ( D ) p ( D ′ ) . R_{\text{prior}}(D, D') = \frac{p(D)}{p(D')}. Rprior(D,D′)=p(D′)p(D).
将两者相除,得到似然比:
R post R prior = p ( X ∣ D ) p ( X ∣ D ′ ) = P ( X ) Q ( X ) . \frac{R_{\text{post}}}{R_{\text{prior}}} = \frac{p(X \mid D)}{p(X \mid D')} = \frac{P(X)}{Q(X)}. RpriorRpost=p(X∣D′)p(X∣D)=Q(X)P(X).
2. 期望与Rényi散度的联系
目标是计算在分布 P P P 下,似然比的 ( α − 1 ) (\alpha - 1) (α−1) 阶矩:
E P [ ( R post R prior ) α − 1 ] = E P [ ( P ( X ) Q ( X ) ) α − 1 ] . \mathbb{E}_P\left[ \left( \frac{R_{\text{post}}}{R_{\text{prior}}} \right)^{\alpha - 1} \right] = \mathbb{E}_P\left[ \left( \frac{P(X)}{Q(X)} \right)^{\alpha - 1} \right]. EP[(RpriorRpost)α−1]=EP[(Q(X)P(X))α−1].
根据期望的定义:
E P [ ( P Q ) α − 1 ] = ∫ P ( x ) ( P ( x ) Q ( x ) ) α − 1 d x = ∫ P ( x ) α Q ( x ) 1 − α d x . \mathbb{E}_P\left[ \left( \frac{P}{Q} \right)^{\alpha - 1} \right] = \int P(x) \left( \frac{P(x)}{Q(x)} \right)^{\alpha - 1} dx = \int P(x)^\alpha Q(x)^{1 - \alpha} dx. EP[(QP)α−1]=∫P(x)(Q(x)P(x))α−1dx=∫P(x)αQ(x)1−αdx.
3. Rényi散度的定义
Rényi散度 D α ( P ∥ Q ) D_\alpha(P \parallel Q) Dα(P∥Q) 的定义为:
D α ( P ∥ Q ) = 1 α − 1 log ∫ P ( x ) α Q ( x ) 1 − α d x . D_\alpha(P \parallel Q) = \frac{1}{\alpha - 1} \log \int P(x)^\alpha Q(x)^{1 - \alpha} dx. Dα(P∥Q)=α−11log∫P(x)αQ(x)1−αdx.
因此,上述积分可表示为:
∫ P ( x ) α Q ( x ) 1 − α d x = exp ( ( α − 1 ) D α ( P ∥ Q ) ) . \int P(x)^\alpha Q(x)^{1 - \alpha} dx = \exp\left( (\alpha - 1) D_\alpha(P \parallel Q) \right). ∫P(x)αQ(x)1−αdx=exp((α−1)Dα(P∥Q)).
4. 等式链的完成
结合上述步骤:
E P [ ( R post R prior ) α − 1 ] = exp ( ( α − 1 ) D α ( P ∥ Q ) ) . \mathbb{E}_P\left[ \left( \frac{R_{\text{post}}}{R_{\text{prior}}} \right)^{\alpha - 1} \right] = \exp\left( (\alpha - 1) D_\alpha(P \parallel Q) \right). EP[(RpriorRpost)α−1]=exp((α−1)Dα(P∥Q)).
进一步,当在分布 Q Q Q 下计算时:
E Q [ ( P ( X ) Q ( X ) ) α ] = ∫ Q ( x ) ( P ( x ) Q ( x ) ) α d x = ∫ P ( x ) α Q ( x ) 1 − α d x , \mathbb{E}_Q\left[ \left( \frac{P(X)}{Q(X)} \right)^\alpha \right] = \int Q(x) \left( \frac{P(x)}{Q(x)} \right)^\alpha dx = \int P(x)^\alpha Q(x)^{1 - \alpha} dx, EQ[(Q(X)P(X))α]=∫Q(x)(Q(x)P(x))αdx=∫P(x)αQ(x)1−αdx,
这与 E P \mathbb{E}_P EP 的结果一致。因此:
E Q [ P ( x ) α Q ( x ) 1 − α ] = exp ( ( α − 1 ) D α ( P ∥ Q ) ) . \mathbb{E}_Q\left[ P(x)^\alpha Q(x)^{1 - \alpha} \right] = \exp\left( (\alpha - 1) D_\alpha(P \parallel Q) \right). EQ[P(x)αQ(x)1−α]=exp((α−1)Dα(P∥Q)).
5. 结论
Rényi散度 D α ( P ∥ Q ) D_\alpha(P \parallel Q) Dα(P∥Q) 直接约束了贝叶斯因子的后验变化:
E P [ ( R post R prior ) α − 1 ] = exp ( ( α − 1 ) D α ( P ∥ Q ) ) . \mathbb{E}_P\left[ \left( \frac{R_{\text{post}}}{R_{\text{prior}}} \right)^{\alpha - 1} \right] = \exp\left( (\alpha - 1) D_\alpha(P \parallel Q) \right). EP[(RpriorRpost)α−1]=exp((α−1)Dα(P∥Q)).
这表明,RDP的隐私保证通过限制后验概率比的矩,确保了攻击者无法通过观测结果 X X X 显著区分数据集 D D D 和 D ′ D' D′。
关键点总结:
- 贝叶斯因子分解为似然比与先验比的乘积。
- 似然比的 ( α − 1 ) (\alpha - 1) (α−1) 阶矩与Rényi散度直接相关。
- Rényi散度的指数形式量化了后验变化的概率界限。