golang channel源码

发布于:2025-04-20 ⋅ 阅读:(14) ⋅ 点赞:(0)

解析

数据结构

hchan:channel 数据结构
qcount:当前 channel 中存在多少个元素;
dataqsize: 当前 channel 能存放的元素容量;
buf:channel 中用于存放元素的环形缓冲区;
elemsize:channel 元素类型的大小;
closed:标识 channel 是否关闭;
elemtype:channel 元素类型;
sendx:发送元素进入环形缓冲区的 index;
recvx:接收元素所处的环形缓冲区的 index;
recvq:因接收而陷入阻塞的协程队列;
sendq:因发送而陷入阻塞的协程队列;

type hchan struct {
	qcount   uint           // total data in the queue
	dataqsiz uint           // size of the circular queue
	buf      unsafe.Pointer // points to an array of dataqsiz elements
	elemsize uint16
	closed   uint32
	timer    *timer // timer feeding this chan
	elemtype *_type // element type
	sendx    uint   // send index
	recvx    uint   // receive index
	recvq    waitq  // list of recv waiters
	sendq    waitq  // list of send waiters

	// lock protects all fields in hchan, as well as several
	// fields in sudogs blocked on this channel.
	//
	// Do not change another G's status while holding this lock
	// (in particular, do not ready a G), as this can deadlock
	// with stack shrinking.
	lock mutex
}

waitq:阻塞的协程队列
first:队列头部
last:队列尾部

type waitq struct {
	first *sudog
	last  *sudog
}

//转到:链接名reflect_makechan reflect.makechan
func reflect_makechan(t *chantype, size int) *hchan {
	return makechan(t, size)
}

func makechan64(t *chantype, size int64) *hchan {
	if int64(int(size)) != size {
		panic(plainError("makechan: size out of range"))
	}

	return makechan(t, int(size))
}

func makechan(t *chantype, size int) *hchan {
	elem := t.Elem

	//编译器会检查这一点,但要安全。
	if elem.Size_ >= 1<<16 {
		throw("makechan: invalid channel element type")
	}
	if hchanSize%maxAlign != 0 || elem.Align_ > maxAlign {
		throw("makechan: bad alignment")
	}

	mem, overflow := math.MulUintptr(elem.Size_, uintptr(size))
	if overflow || mem > maxAlloc-hchanSize || size < 0 {
		panic(plainError("makechan: size out of range"))
	}

	//当buf中存储的元素不包含指针时,Hchan不包含GC感兴趣的指针。
	//buf指向相同的分配,elemtype是持久的。
	//SudoG是从其所属线程引用的,因此无法收集它们。
	//TODO(dvyukov,rlh):重新思考收集器何时可以移动分配的对象。
	var c *hchan
	switch {
	case mem == 0:
		//队列或元素大小为零。
		c = (*hchan)(mallocgc(hchanSize, nil, true))
//竞赛检测器使用此位置进行同步。
		c.buf = c.raceaddr()
	case !elem.Pointers():
		//元素不包含指针。
		//在一次通话中分配hchan和buf。
		c = (*hchan)(mallocgc(hchanSize+mem, nil, true))
		c.buf = add(unsafe.Pointer(c), hchanSize)
	default:
		//元素包含指针。
		c = new(hchan)
		c.buf = mallocgc(mem, elem, true)
	}

	c.elemsize = uint16(elem.Size_)
	c.elemtype = elem
	c.dataqsiz = uint(size)
	lockInit(&c.lock, lockRankHchan)

	if debugChan {
		print("makechan: chan=", c, "; elemsize=", elem.Size_, "; dataqsiz=", size, "\n")
	}
	return c
}

//chanbuf(c,i)是指向缓冲区中第i个槽的指针。
//
//chanbuf应该是一个内部细节,
//但广泛使用的包使用linkname访问它。
//耻辱大厅的著名成员包括:
//-github/fjl/memsize
//
//不要删除或更改类型签名。
//见go.dev/issue/67401。
//
//go:链接名chanbuf
func chanbuf(c *hchan, i uint) unsafe.Pointer {
	return add(c.buf, uintptr(i)*uintptr(c.elemsize))
}

//full报告c上的发送是否会阻塞(即通道已满)。
//它使用可变状态的单个字大小的读取,因此尽管
//答案瞬间为真,正确答案可能已经改变
//当调用函数接收到返回值时。
func full(c *hchan) bool {
	//c.dataqsiz是不可变的(在创建通道后从不写入)
//因此,在信道操作期间的任何时候都可以安全地读取。
	if c.dataqsiz == 0 {
//假设指针读取是原子性的。
		return c.recvq.first == nil
	}
//假设uint读取是轻松原子的。
	return c.qcount == c.dataqsiz
}

//编译代码中c<-x的入口点。
//
//去:nosplit
func chansend1(c *hchan, elem unsafe.Pointer) {
	chansend(c, elem, true, getcallerpc())
}

/*
*通用单通道发送/接收
*如果block不是nil,
*那么协议将不会
*睡觉,但如果可以的话就回来
*不完整。
*
*睡眠可以用g.param==nil唤醒
*当睡眠中涉及的通道
*已关闭。最容易循环并重新运行
*手术;我们会看到它现在已经关闭了。
*/
func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
	if c == nil {
		if !block {
			return false
		}
		gopark(nil, nil, waitReasonChanSendNilChan, traceBlockForever, 2)
		throw("unreachable")
	}

	if debugChan {
		print("chansend: chan=", c, "\n")
	}

	if raceenabled {
		racereadpc(c.raceaddr(), callerpc, abi.FuncPCABIInternal(chansend))
	}

	//快速路径:检查未获取锁的非阻塞操作是否失败。
//
//在观察到通道未关闭后,我们观察到通道
//未准备好发送。这些观察中的每一个都是一个单词大小的阅读
//(第一个c.closed和第二个full())。
//因为封闭通道无法从“准备发送”转换为
//“未准备好发送”,即使通道在两次观测之间关闭,
//它们暗示了两者之间的某个时刻,当时通道都还没有关闭
//并且尚未准备好发送。我们表现得好像在那一刻观察到了通道,
//并报告发送无法继续。
//
//如果在这里对读取进行重新排序是可以的:如果我们观察到通道不是
//准备发送,然后观察到它没有关闭,这意味着
//在第一次观察期间,通道没有关闭。然而,这里什么都没有
//保证向前发展。我们依靠解锁的副作用
//chanrecv()和closechan()来更新这个线程的c.closed和full()视图。
	if !block && c.closed == 0 && full(c) {
		return false
	}

	var t0 int64
	if blockprofilerate > 0 {
		t0 = cputicks()
	}

	lock(&c.lock)

	if c.closed != 0 {
		unlock(&c.lock)
		panic(plainError("send on closed channel"))
	}

	if sg := c.recvq.dequeue(); sg != nil {
//找到一个正在等待的接收器。我们传递要发送的值
//绕过信道缓冲器(如果有的话)直接传输到接收器。
		send(c, sg, ep, func() { unlock(&c.lock) }, 3)
		return true
	}

	if c.qcount < c.dataqsiz {
//通道缓冲区中有可用空间。取消要发送的元素的队列。
		qp := chanbuf(c, c.sendx)
		if raceenabled {
			racenotify(c, c.sendx, nil)
		}
		typedmemmove(c.elemtype, qp, ep)
		c.sendx++
		if c.sendx == c.dataqsiz {
			c.sendx = 0
		}
		c.qcount++
		unlock(&c.lock)
		return true
	}

	if !block {
		unlock(&c.lock)
		return false
	}

//封锁频道。某个接收器将为我们完成操作。
	gp := getg()
	mysg := acquireSudog()
	mysg.releasetime = 0
	if t0 != 0 {
		mysg.releasetime = -1
	}
//在分配elem和查询mysg之间没有堆栈拆分
//在gp.waiting上,copystack可以在哪里找到它。
	mysg.elem = ep
	mysg.waitlink = nil
	mysg.g = gp
	mysg.isSelect = false
	mysg.c = c
	gp.waiting = mysg
	gp.param = nil
	c.sendq.enqueue(mysg)
//向任何试图缩小我们堆栈的人发出信号,表明我们正在努力
//把车停在航道上。此G状态之间的窗口
//当我们设置gp.activeTackChans时
//堆叠收缩。
	gp.parkingOnChan.Store(true)
	gopark(chanparkcommit, unsafe.Pointer(&c.lock), waitReasonChanSend, traceBlockChanSend, 2)
	//确保发送的值保持有效,直到
//接收者将其复制出来。sudog有一个指针指向
//堆栈对象,但sudogs不被视为
//堆栈跟踪器。
	KeepAlive(ep)

//有人把我们吵醒了。
	if mysg != gp.waiting {
		throw("G waiting list is corrupted")
	}
	gp.waiting = nil
	gp.activeStackChans = false
	closed := !mysg.success
	gp.param = nil
	if mysg.releasetime > 0 {
		blockevent(mysg.releasetime-t0, 2)
	}
	mysg.c = nil
	releaseSudog(mysg)
	if closed {
		if c.closed == 0 {
			throw("chansend: spurious wakeup")
		}
		panic(plainError("send on closed channel"))
	}
	return true
}

//send在空信道c上处理发送操作。
//发送方发送的值ep被复制到接收方sg。
//然后,接收器被唤醒,继续它的快乐之路。
//通道c必须为空并锁定。send使用unlockf解锁c。
//sg必须已经从c中退出。
//ep必须为非nil,并指向堆或调用者的堆栈。
func send(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) {
	if raceenabled {
		if c.dataqsiz == 0 {
			racesync(c, sg)
		} else {
			//假装我们穿过缓冲区,即使
//我们直接复制。请注意,我们需要递增
//仅在启用赛道时才显示头部/尾部位置。
			racenotify(c, c.recvx, nil)
			racenotify(c, c.recvx, sg)
			c.recvx++
			if c.recvx == c.dataqsiz {
				c.recvx = 0
			}
			c.sendx = c.recvx // c.sendx = (c.sendx+1) % c.dataqsiz
		}
	}
	if sg.elem != nil {
		sendDirect(c.elemtype, sg, ep)
		sg.elem = nil
	}
	gp := sg.g
	unlockf()
	gp.param = unsafe.Pointer(sg)
	sg.success = true
	if sg.releasetime != 0 {
		sg.releasetime = cputicks()
	}
	goready(gp, skip+1)
}

// timerchandrain removes all elements in channel c's buffer.
// It reports whether any elements were removed.
// Because it is only intended for timers, it does not
// handle waiting senders at all (all timer channels
// use non-blocking sends to fill the buffer).
func timerchandrain(c *hchan) bool {
	// Note: Cannot use empty(c) because we are called
	// while holding c.timer.sendLock, and empty(c) will
	// call c.timer.maybeRunChan, which will deadlock.
	// We are emptying the channel, so we only care about
	// the count, not about potentially filling it up.
	if atomic.Loaduint(&c.qcount) == 0 {
		return false
	}
	lock(&c.lock)
	any := false
	for c.qcount > 0 {
		any = true
		typedmemclr(c.elemtype, chanbuf(c, c.recvx))
		c.recvx++
		if c.recvx == c.dataqsiz {
			c.recvx = 0
		}
		c.qcount--
	}
	unlock(&c.lock)
	return any
}

// Sends and receives on unbuffered or empty-buffered channels are the
// only operations where one running goroutine writes to the stack of
// another running goroutine. The GC assumes that stack writes only
// happen when the goroutine is running and are only done by that
// goroutine. Using a write barrier is sufficient to make up for
// violating that assumption, but the write barrier has to work.
// typedmemmove will call bulkBarrierPreWrite, but the target bytes
// are not in the heap, so that will not help. We arrange to call
// memmove and typeBitsBulkBarrier instead.

func sendDirect(t *_type, sg *sudog, src unsafe.Pointer) {
	// src is on our stack, dst is a slot on another stack.

	// Once we read sg.elem out of sg, it will no longer
	// be updated if the destination's stack gets copied (shrunk).
	// So make sure that no preemption points can happen between read & use.
	dst := sg.elem
	typeBitsBulkBarrier(t, uintptr(dst), uintptr(src), t.Size_)
	// No need for cgo write barrier checks because dst is always
	// Go memory.
	memmove(dst, src, t.Size_)
}

func recvDirect(t *_type, sg *sudog, dst unsafe.Pointer) {
	// dst is on our stack or the heap, src is on another stack.
	// The channel is locked, so src will not move during this
	// operation.
	src := sg.elem
	typeBitsBulkBarrier(t, uintptr(dst), uintptr(src), t.Size_)
	memmove(dst, src, t.Size_)
}

func closechan(c *hchan) {
	if c == nil {
		panic(plainError("close of nil channel"))
	}

	lock(&c.lock)
	if c.closed != 0 {
		unlock(&c.lock)
		panic(plainError("close of closed channel"))
	}

	if raceenabled {
		callerpc := getcallerpc()
		racewritepc(c.raceaddr(), callerpc, abi.FuncPCABIInternal(closechan))
		racerelease(c.raceaddr())
	}

	c.closed = 1

	var glist gList

	// release all readers
	for {
		sg := c.recvq.dequeue()
		if sg == nil {
			break
		}
		if sg.elem != nil {
			typedmemclr(c.elemtype, sg.elem)
			sg.elem = nil
		}
		if sg.releasetime != 0 {
			sg.releasetime = cputicks()
		}
		gp := sg.g
		gp.param = unsafe.Pointer(sg)
		sg.success = false
		if raceenabled {
			raceacquireg(gp, c.raceaddr())
		}
		glist.push(gp)
	}

	// release all writers (they will panic)
	for {
		sg := c.sendq.dequeue()
		if sg == nil {
			break
		}
		sg.elem = nil
		if sg.releasetime != 0 {
			sg.releasetime = cputicks()
		}
		gp := sg.g
		gp.param = unsafe.Pointer(sg)
		sg.success = false
		if raceenabled {
			raceacquireg(gp, c.raceaddr())
		}
		glist.push(gp)
	}
	unlock(&c.lock)

	// Ready all Gs now that we've dropped the channel lock.
	for !glist.empty() {
		gp := glist.pop()
		gp.schedlink = 0
		goready(gp, 3)
	}
}

// empty reports whether a read from c would block (that is, the channel is
// empty).  It is atomically correct and sequentially consistent at the moment
// it returns, but since the channel is unlocked, the channel may become
// non-empty immediately afterward.
func empty(c *hchan) bool {
	// c.dataqsiz is immutable.
	if c.dataqsiz == 0 {
		return atomic.Loadp(unsafe.Pointer(&c.sendq.first)) == nil
	}
	// c.timer is also immutable (it is set after make(chan) but before any channel operations).
	// All timer channels have dataqsiz > 0.
	if c.timer != nil {
		c.timer.maybeRunChan()
	}
	return atomic.Loaduint(&c.qcount) == 0
}

// entry points for <- c from compiled code.
//
//go:nosplit
func chanrecv1(c *hchan, elem unsafe.Pointer) {
	chanrecv(c, elem, true)
}

//go:nosplit
func chanrecv2(c *hchan, elem unsafe.Pointer) (received bool) {
	_, received = chanrecv(c, elem, true)
	return
}

// chanrecv receives on channel c and writes the received data to ep.
// ep may be nil, in which case received data is ignored.
// If block == false and no elements are available, returns (false, false).
// Otherwise, if c is closed, zeros *ep and returns (true, false).
// Otherwise, fills in *ep with an element and returns (true, true).
// A non-nil ep must point to the heap or the caller's stack.
func chanrecv(c *hchan, ep unsafe.Pointer, block bool) (selected, received bool) {
	// raceenabled: don't need to check ep, as it is always on the stack
	// or is new memory allocated by reflect.

	if debugChan {
		print("chanrecv: chan=", c, "\n")
	}

	if c == nil {
		if !block {
			return
		}
		gopark(nil, nil, waitReasonChanReceiveNilChan, traceBlockForever, 2)
		throw("unreachable")
	}

	if c.timer != nil {
		c.timer.maybeRunChan()
	}

	// Fast path: check for failed non-blocking operation without acquiring the lock.
	if !block && empty(c) {
		// After observing that the channel is not ready for receiving, we observe whether the
		// channel is closed.
		//
		// Reordering of these checks could lead to incorrect behavior when racing with a close.
		// For example, if the channel was open and not empty, was closed, and then drained,
		// reordered reads could incorrectly indicate "open and empty". To prevent reordering,
		// we use atomic loads for both checks, and rely on emptying and closing to happen in
		// separate critical sections under the same lock.  This assumption fails when closing
		// an unbuffered channel with a blocked send, but that is an error condition anyway.
		if atomic.Load(&c.closed) == 0 {
			// Because a channel cannot be reopened, the later observation of the channel
			// being not closed implies that it was also not closed at the moment of the
			// first observation. We behave as if we observed the channel at that moment
			// and report that the receive cannot proceed.
			return
		}
		// The channel is irreversibly closed. Re-check whether the channel has any pending data
		// to receive, which could have arrived between the empty and closed checks above.
		// Sequential consistency is also required here, when racing with such a send.
		if empty(c) {
			// The channel is irreversibly closed and empty.
			if raceenabled {
				raceacquire(c.raceaddr())
			}
			if ep != nil {
				typedmemclr(c.elemtype, ep)
			}
			return true, false
		}
	}

	var t0 int64
	if blockprofilerate > 0 {
		t0 = cputicks()
	}

	lock(&c.lock)

	if c.closed != 0 {
		if c.qcount == 0 {
			if raceenabled {
				raceacquire(c.raceaddr())
			}
			unlock(&c.lock)
			if ep != nil {
				typedmemclr(c.elemtype, ep)
			}
			return true, false
		}
		// The channel has been closed, but the channel's buffer have data.
	} else {
		// Just found waiting sender with not closed.
		if sg := c.sendq.dequeue(); sg != nil {
			// Found a waiting sender. If buffer is size 0, receive value
			// directly from sender. Otherwise, receive from head of queue
			// and add sender's value to the tail of the queue (both map to
			// the same buffer slot because the queue is full).
			recv(c, sg, ep, func() { unlock(&c.lock) }, 3)
			return true, true
		}
	}

	if c.qcount > 0 {
		// Receive directly from queue
		qp := chanbuf(c, c.recvx)
		if raceenabled {
			racenotify(c, c.recvx, nil)
		}
		if ep != nil {
			typedmemmove(c.elemtype, ep, qp)
		}
		typedmemclr(c.elemtype, qp)
		c.recvx++
		if c.recvx == c.dataqsiz {
			c.recvx = 0
		}
		c.qcount--
		unlock(&c.lock)
		return true, true
	}

	if !block {
		unlock(&c.lock)
		return false, false
	}

	// no sender available: block on this channel.
	gp := getg()
	mysg := acquireSudog()
	mysg.releasetime = 0
	if t0 != 0 {
		mysg.releasetime = -1
	}
	// No stack splits between assigning elem and enqueuing mysg
	// on gp.waiting where copystack can find it.
	mysg.elem = ep
	mysg.waitlink = nil
	gp.waiting = mysg

	mysg.g = gp
	mysg.isSelect = false
	mysg.c = c
	gp.param = nil
	c.recvq.enqueue(mysg)
	if c.timer != nil {
		blockTimerChan(c)
	}

	// Signal to anyone trying to shrink our stack that we're about
	// to park on a channel. The window between when this G's status
	// changes and when we set gp.activeStackChans is not safe for
	// stack shrinking.
	gp.parkingOnChan.Store(true)
	gopark(chanparkcommit, unsafe.Pointer(&c.lock), waitReasonChanReceive, traceBlockChanRecv, 2)

	// someone woke us up
	if mysg != gp.waiting {
		throw("G waiting list is corrupted")
	}
	if c.timer != nil {
		unblockTimerChan(c)
	}
	gp.waiting = nil
	gp.activeStackChans = false
	if mysg.releasetime > 0 {
		blockevent(mysg.releasetime-t0, 2)
	}
	success := mysg.success
	gp.param = nil
	mysg.c = nil
	releaseSudog(mysg)
	return true, success
}

// recv processes a receive operation on a full channel c.
// There are 2 parts:
//  1. The value sent by the sender sg is put into the channel
//     and the sender is woken up to go on its merry way.
//  2. The value received by the receiver (the current G) is
//     written to ep.
//
// For synchronous channels, both values are the same.
// For asynchronous channels, the receiver gets its data from
// the channel buffer and the sender's data is put in the
// channel buffer.
// Channel c must be full and locked. recv unlocks c with unlockf.
// sg must already be dequeued from c.
// A non-nil ep must point to the heap or the caller's stack.
func recv(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) {
	if c.dataqsiz == 0 {
		if raceenabled {
			racesync(c, sg)
		}
		if ep != nil {
			// copy data from sender
			recvDirect(c.elemtype, sg, ep)
		}
	} else {
		// Queue is full. Take the item at the
		// head of the queue. Make the sender enqueue
		// its item at the tail of the queue. Since the
		// queue is full, those are both the same slot.
		qp := chanbuf(c, c.recvx)
		if raceenabled {
			racenotify(c, c.recvx, nil)
			racenotify(c, c.recvx, sg)
		}
		// copy data from queue to receiver
		if ep != nil {
			typedmemmove(c.elemtype, ep, qp)
		}
		// copy data from sender to queue
		typedmemmove(c.elemtype, qp, sg.elem)
		c.recvx++
		if c.recvx == c.dataqsiz {
			c.recvx = 0
		}
		c.sendx = c.recvx // c.sendx = (c.sendx+1) % c.dataqsiz
	}
	sg.elem = nil
	gp := sg.g
	unlockf()
	gp.param = unsafe.Pointer(sg)
	sg.success = true
	if sg.releasetime != 0 {
		sg.releasetime = cputicks()
	}
	goready(gp, skip+1)
}

func chanparkcommit(gp *g, chanLock unsafe.Pointer) bool {
	// There are unlocked sudogs that point into gp's stack. Stack
	// copying must lock the channels of those sudogs.
	// Set activeStackChans here instead of before we try parking
	// because we could self-deadlock in stack growth on the
	// channel lock.
	gp.activeStackChans = true
	// Mark that it's safe for stack shrinking to occur now,
	// because any thread acquiring this G's stack for shrinking
	// is guaranteed to observe activeStackChans after this store.
	gp.parkingOnChan.Store(false)
	// Make sure we unlock after setting activeStackChans and
	// unsetting parkingOnChan. The moment we unlock chanLock
	// we risk gp getting readied by a channel operation and
	// so gp could continue running before everything before
	// the unlock is visible (even to gp itself).
	unlock((*mutex)(chanLock))
	return true
}

// compiler implements
//
//	select {
//	case c <- v:
//		... foo
//	default:
//		... bar
//	}
//
// as
//
//	if selectnbsend(c, v) {
//		... foo
//	} else {
//		... bar
//	}
func selectnbsend(c *hchan, elem unsafe.Pointer) (selected bool) {
	return chansend(c, elem, false, getcallerpc())
}

// compiler implements
//
//	select {
//	case v, ok = <-c:
//		... foo
//	default:
//		... bar
//	}
//
// as
//
//	if selected, ok = selectnbrecv(&v, c); selected {
//		... foo
//	} else {
//		... bar
//	}
func selectnbrecv(elem unsafe.Pointer, c *hchan) (selected, received bool) {
	return chanrecv(c, elem, false)
}

//go:linkname reflect_chansend reflect.chansend0
func reflect_chansend(c *hchan, elem unsafe.Pointer, nb bool) (selected bool) {
	return chansend(c, elem, !nb, getcallerpc())
}

//go:linkname reflect_chanrecv reflect.chanrecv
func reflect_chanrecv(c *hchan, nb bool, elem unsafe.Pointer) (selected bool, received bool) {
	return chanrecv(c, elem, !nb)
}

func chanlen(c *hchan) int {
	if c == nil {
		return 0
	}
	async := debug.asynctimerchan.Load() != 0
	if c.timer != nil && async {
		c.timer.maybeRunChan()
	}
	if c.timer != nil && !async {
		// timer channels have a buffered implementation
		// but present to users as unbuffered, so that we can
		// undo sends without users noticing.
		return 0
	}
	return int(c.qcount)
}

func chancap(c *hchan) int {
	if c == nil {
		return 0
	}
	if c.timer != nil {
		async := debug.asynctimerchan.Load() != 0
		if async {
			return int(c.dataqsiz)
		}
		// timer channels have a buffered implementation
		// but present to users as unbuffered, so that we can
		// undo sends without users noticing.
		return 0
	}
	return int(c.dataqsiz)
}

//go:linkname reflect_chanlen reflect.chanlen
func reflect_chanlen(c *hchan) int {
	return chanlen(c)
}

//go:linkname reflectlite_chanlen internal/reflectlite.chanlen
func reflectlite_chanlen(c *hchan) int {
	return chanlen(c)
}

//go:linkname reflect_chancap reflect.chancap
func reflect_chancap(c *hchan) int {
	return chancap(c)
}

//go:linkname reflect_chanclose reflect.chanclose
func reflect_chanclose(c *hchan) {
	closechan(c)
}

func (q *waitq) enqueue(sgp *sudog) {
	sgp.next = nil
	x := q.last
	if x == nil {
		sgp.prev = nil
		q.first = sgp
		q.last = sgp
		return
	}
	sgp.prev = x
	x.next = sgp
	q.last = sgp
}

func (q *waitq) dequeue() *sudog {
	for {
		sgp := q.first
		if sgp == nil {
			return nil
		}
		y := sgp.next
		if y == nil {
			q.first = nil
			q.last = nil
		} else {
			y.prev = nil
			q.first = y
			sgp.next = nil // mark as removed (see dequeueSudoG)
		}

		// if a goroutine was put on this queue because of a
		// select, there is a small window between the goroutine
		// being woken up by a different case and it grabbing the
		// channel locks. Once it has the lock
		// it removes itself from the queue, so we won't see it after that.
		// We use a flag in the G struct to tell us when someone
		// else has won the race to signal this goroutine but the goroutine
		// hasn't removed itself from the queue yet.
		if sgp.isSelect && !sgp.g.selectDone.CompareAndSwap(0, 1) {
			continue
		}

		return sgp
	}
}

func (c *hchan) raceaddr() unsafe.Pointer {
	// Treat read-like and write-like operations on the channel to
	// happen at this address. Avoid using the address of qcount
	// or dataqsiz, because the len() and cap() builtins read
	// those addresses, and we don't want them racing with
	// operations like close().
	return unsafe.Pointer(&c.buf)
}

func racesync(c *hchan, sg *sudog) {
	racerelease(chanbuf(c, 0))
	raceacquireg(sg.g, chanbuf(c, 0))
	racereleaseg(sg.g, chanbuf(c, 0))
	raceacquire(chanbuf(c, 0))
}

// Notify the race detector of a send or receive involving buffer entry idx
// and a channel c or its communicating partner sg.
// This function handles the special case of c.elemsize==0.
func racenotify(c *hchan, idx uint, sg *sudog) {
	// We could have passed the unsafe.Pointer corresponding to entry idx
	// instead of idx itself.  However, in a future version of this function,
	// we can use idx to better handle the case of elemsize==0.
	// A future improvement to the detector is to call TSan with c and idx:
	// this way, Go will continue to not allocating buffer entries for channels
	// of elemsize==0, yet the race detector can be made to handle multiple
	// sync objects underneath the hood (one sync object per idx)
	qp := chanbuf(c, idx)
	// When elemsize==0, we don't allocate a full buffer for the channel.
	// Instead of individual buffer entries, the race detector uses the
	// c.buf as the only buffer entry.  This simplification prevents us from
	// following the memory model's happens-before rules (rules that are
	// implemented in racereleaseacquire).  Instead, we accumulate happens-before
	// information in the synchronization object associated with c.buf.
	if c.elemsize == 0 {
		if sg == nil {
			raceacquire(qp)
			racerelease(qp)
		} else {
			raceacquireg(sg.g, qp)
			racereleaseg(sg.g, qp)
		}
	} else {
		if sg == nil {
			racereleaseacquire(qp)
		} else {
			racereleaseacquireg(sg.g, qp)
		}
	}
}

其他

const (
	maxAlign  = 8
	hchanSize = unsafe.Sizeof(hchan{}) + uintptr(-int(unsafe.Sizeof(hchan{}))&(maxAlign-1))
	debugChan = false
)


网站公告

今日签到

点亮在社区的每一天
去签到